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Abstract:  

 

The physical-chemical composition of multiple biomasses can be predicted from one 

single calibration model instead of compositional prediction conducted by individual 

models. In this work, multi-product models, involving banana, coffee and coconut 

samples were built by partial least square regression (PLS) for ten different chemical 

constituents (total lignin, klason lignin, acid insoluble lignin, acid soluble lignin, 

extractives, moisture, ash, glucose, xylose and total sugars). The developed PLS models 

show satisfactory results, with relative error (RE%) less than 20.00, except for ash and 

xylose models; ratio performance deviation (RPD) values above than 4.4 and range 

error ratio (RER) values above 4.00. This means that all models are qualified for 

screening calibration. Principal component analysis (PCA) was useful to demonstrate 

the possibility and the rationale for combining three biomass residues into one 

calibration model. The results have shown the potential of NIR in combination with 

chemometrics to quantify the chemical composition of feedstocks. 

 

 

Keywords: PCA; PLS; Chemical composition; Banana, Coffee, Coconut. 
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1. Introduction 

Near infrared spectroscopy (NIR) has received considerable attention in the last 

years, as a tool for rapid, non-destructive, non-expensive (1–5% of the wet chemistry 

procedure cost), of simple application and that allows simultaneous assessment of 

multiple parameters of biomass composition [1,2]. The combination of NIR with 

chemometric tools allowed the development of multivariate calibration models for the 

rapid analysis of the chemical composition of feedstocks [3-7].  

To ensure reliable prediction using the correlation of NIR spectra with the 

reference data from biomass composition, the NIR methods must be calibrated to an 

accurate primary reference analytical method. For this initial calibration, advanced 

multivariate models are developed, and although the process cost is slightly increased 

(30% of the wet chemistry procedure), they are still lower than the wet analysis [1]. 

Besides, another question raised when building calibration models, is the necessity to 

have a large variability of the calibration population and of the chemical characteristic 

of the samples [8].  

Most frequently this variability is reached by sampling over different times and 

locations, what increases the process costs. To avoid such additional costs, some authors 

have used different botanical fractions from biomass to increase the variability in 

calibration models [8-10]. One promising alternative for increasing sample variability 

would be to use various feedstocks. However, literature [3,8] is scarce on the use of 

multi-biomass calibration models in which one single model combining different 

biomasses is developed.  

According to Liu et al. [8] the main difficulty in building such models is 

associated to the dissimilarity among biomasses (different NIR spectra). It is s not 

practical to develop a NIR calibration model with species showing large dissimilarity. 

https://www.researchgate.net/publication/10782707_Rapid_Biomass_Analysis_New_Tools_for_Compositional_Analysis_of_Corn_Stover_Feedstocks_and_Process_Intermediates_from_Ethanol_Production?el=1_x_8&enrichId=rgreq-0f5c9b59a90a2533b5167f0c6d28993c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODkzMjE3MTtBUzozMTQxODA0ODQxNzM4MjRAMTQ1MTkxNzg3MjMwNg==
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https://www.researchgate.net/publication/26363879_Near_Infrared_Spectroscopy_fundamentals_practical_aspects_and_analytical_applications?el=1_x_8&enrichId=rgreq-0f5c9b59a90a2533b5167f0c6d28993c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODkzMjE3MTtBUzozMTQxODA0ODQxNzM4MjRAMTQ1MTkxNzg3MjMwNg==
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https://www.researchgate.net/publication/257157733_ChemInform_Abstract_Qualitative_and_Quantitative_Analysis_of_Lignocellulosic_Biomass_Using_Infrared_Techniques_A_Mini-Review?el=1_x_8&enrichId=rgreq-0f5c9b59a90a2533b5167f0c6d28993c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODkzMjE3MTtBUzozMTQxODA0ODQxNzM4MjRAMTQ1MTkxNzg3MjMwNg==
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So, to ensure a good prediction and reliable result, principal component analysis (PCA) 

was performed [11] to justify the development of a single calibration model containing 

three different biomasses. Besides, the usual statistical parameters (calibration and 

validation plots, calibration and validation errors, among others) were used to ensure the 

confidence of the models.  

This study have shown that is feasible the arduous and costly process of sample 

collection over different times and from different locations was effectively replaced in a 

simple manner to use different types of biomass wastes to build single multivariate 

predictive models to analyze multiple constituents. Three quite distinct feedstocks 

(coffee, banana and coconut) and also different botanic fractions of each plant were 

considered. So, from the 10 different parameters (total lignin, klason lignin, acid 

insoluble lignin, acid soluble lignin, extractives, moisture, ash, glucose, xylose and total 

sugars) of physical-chemical composition analyzed, one model was built for each 

constituent, but useful for three singular feedstocks. 

It proves that the NIR associated to multivariate analysis can be used for screening 

calibration and quality control to estimate physical-chemical content in biomass 

residues.  

2. Material and methods 

2.1. Sample collection 

A total of 104, 101 and 28 samples of banana, coffee and coconut residues of 

different botanical parts were collected as illustrated in figure 1.  

Also, among the different fractions, samples from different locations, soils, 

cultivars, species and harvest time were sampled to ensure the variability. 

Of the 233 samples collected, not all were subjected to the wet analysis steps. 

All the 233 samples were analyzed for moisture, extractive and ash. The analyses of 
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soluble and insoluble lignin contents were carried out for 137 samples, and for sugars 

only 94 samples were analyzed.  

 

2.2. Physical-chemical analysis 

All the samples were dried, mill and then sieved to a homogeneus particle size of 

180–850 µm. The biomass analyses (all in duplicate) of extractives, lignins and sugars 

were carried out using standard National Renewable Energy Laboratory (NREL) 

methods [12,13]. For extractives (NREL/TP-510-42619, 2008), the accelerated solvent 

extraction with 95% ethanol in a Dionex ASE 200 system (Thermo Fisher Scientific, 

Waltham, MA, USA), was used. Acid hydrolysis (NREL/TP-510-42618, 2011) on the 

extracted samples was carried out with sulfuric acid 72% in a water bath in the first 

step, followed by hydrolysis for 1 h at 120 ºC (in autoclave) and an acid concentration 

of 4%. In the hydrolysis step the lignin (soluble and insoluble) and sugar contents were 

determined. The acid soluble lignin (ASL) content was determined by UV-spectroscopy 

in a Shimadzu UV-1700 spectrometer (Shimadzu, Kyoto, Japan), at wavelength of 205 

nm. Insoluble lignins (klason lignin (KL) and acid insoluble residue (AIR) were 

determined by gravimetry, and sugars were determined by high pH anion exchange 

chromatography with pulsed amperometric detection (HPAEC-PAD) for the 

monossacharides.  

The moisture (105 ºC) and ash (600 ºC) analyses were carried out using ASTM 

3173-87 [14] and ASTM D 3174-04 methods [15], respectively.  

2.3. Multivariate calibration models 

The Vis-NIR spectra (400-2500 nm) were collected using a FOSS XDS 

instrument (FOSS, Hillerød, Denmark). Each spectrum was generated by averaging 32 

scans, with 0.5 nm of increment. Two spectra were collected for each sample and the 

average spectrum was used for data analysis. 
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Initially, all the 233 raw spectra were submitted to PCA with varimax rotation to 

reveal the data structure and identify similarity/dissimilarity among the three feedstocks.  

Partial least squares regression (PLS1) was used to obtain the multivariate 

calibration models using the Unscrambler 10.2 (Camo Software, Oslo, Norway). The 

data set was randomly split into two subsets: the calibration set consisting of 75% of the 

samples and the external validation set with the remaining 25% of samples. The 

external validation set may be used to determine the number of latent variables (LV), 

and is often cited as the most realistic estimate, particularly of the prediction errors. 

However, it requires a large amount of samples [16,17], such as in the present study. 

These models were developed with the spectra transformed by taking the Savitzky-

Golay second (2D) derivative using a second‐order polynomial, with a window of 15 

and 25 points [18]. For the extractive model, the best results were obtained by 

combining the standard normal variate (SNV) with first (1D) derivative transformations 

using a second‐order polynomial, with a window of 2 points [19].  

For each model, the coefficient of determination (R
2

cal and R
2

val), the root mean 

square error of calibration (RMSEC), the root mean square error of prediction 

(RMSEP), the standard error of calibration (SEC), the standard error of prediction 

(SEP) and the numbers of outliers and LV, were obtained. The error vector, e, which is 

the difference between the reference values and their estimates in calibration set (ecal) 

and validation set (eval), were calculated. Also the relative error (RE), the range error 

ratio (RER), the ratio performance deviation (RPD), the bias, the test t and the test F of 

Snedecor were calculated and used as the criterions of performance for the predictions 

on the calibration and validation sets according to the ASTM-1655-05 [20] rules and 

Fearn [21]. The regression coefficients were interpreted to show the physical meaning 

of the models. 
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All collected data were organized in plots and figures using Origin 8.0 

(Northampton, MA, USA). 

3. Results and discussion 

The Vis-NIR raw spectra and the second derivative spectra of the banana, coffee 

and coconut samples are shown in Figures 2 (A) and 2 (B). The main bands for the three 

biomass sets are located in the same wavelength region for the raw spectra as also for 

the 2D spectra. The 2D spectrum is a measure of the change in the infinitesimal slope of 

the curve and can help solve nearby peaks and sharpen spectral characteristics. 

However, the maximum of the bands undergo a minimum (Figure 2B). 

The bands at 460 and 670 nm are both attributed to lignin and chlorophyll 

structures, included conjugated π-bond system chromophores. Other bands appear at 

1170 nm (2
nd

 overtone of C-H stretch of lignin structures), 1434-1470 nm (assigned to 

1
st
 overtone of O-H stretch of structures of polysaccharides of OH groups with H-

bonds) and 1724 nm (with two overlaps, assignment to C-H stretch of 1
st
 overtone of 

CH2 of lignin or than of CH of furanose or pyranose due to hemicellulose). The band at 

1920 nm is probably assigned to O-H stretch and OH bend of polysaccharides structures 

which overlaps with water. Above 2000 nm, there are the combinations bands, at 2090 

(O-H combination band of carbohydrates) and 2329 nm attributed to C-H stretch or C-H 

combination band of polysaccharides [22-27]. 

Figure 3 presents descriptive statistics (mean and standard deviation), for the 

chemical constituents (%) of the sets comprising samples of all biomasses (Total) as 

well as of each feedstock separately.  

It can be seen that total sugar (TS) is the major constituent (40.0% on average 

for the total set of samples and 51.8% for banana) and the minor constituents are ash 

and ASL for coconut samples (average of 1.35 and 1.44, respectively). The highest and 

lowest range were observed for TS from coconut samples, with a wide variation in the 
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standard deviation (12.4%) and for ash from coffee samples (standard deviation of 

0.46%), respectively. The coefficient of variation (CV) ranged from 16.7 (KL) to 93.7 

(ASL), for coffee and coconut, respectively. The average values found for CV and 

standard deviations for the constituents in all sets were 35.4% and 5.0%, respectively. 

The range in composition for these lignocellulosic constituents is wide, as result 

of the sampling used, that included different lignocellulosic biomasses and botanical 

fractions. 

Table 1 shows the Pearson correlation coefficient between the 10 constituents, 

using the average value of each parameter of the 230 samples. Only absolute values 

above 0.5 were considered significant.  

The ash content is strongly negatively correlated with all constituents, except for 

sugars (Glu and TS, with 0.744 and 0.749, respectively). The opposite occurs to the 

moisture content, which shows positive correlation with lignins and negative correlation 

with sugars. Hayes et al., [5] observed the opposite, where the ash content was 

negatively correlated to most of the sugars. 

Extractives show a positive correlation with insoluble lignins and xylose. A 

negative correlation might be expected for ASL. This positive relationship could 

indicate that extractives present some components that can be attributed to lignins and 

sugars. Ethanol extractives, for example, can include non-structural sugars, organic 

acids, chlorophyll and other components [28, 29]. On the other hand, the negative 

correlation with ASL indicates that the extractives were not condensed or precipitated, 

even under the strong acidic conditions used in the acid hydrolysis stage [30]. 

The KL, AIR and LT are negatively correlated with the sugars (what is 

expected) and are strongly negatively correlated with ash. The higher the content of 

lignin in the lignocellulosic biomass, the lower the level of sugar content. 

https://www.researchgate.net/publication/272890083_Analysis_of_the_lignocellulosic_components_of_peat_samples_with_development_of_near_infrared_spectroscopy_models_for_rapid_quantitative_predictions?el=1_x_8&enrichId=rgreq-0f5c9b59a90a2533b5167f0c6d28993c-XXX&enrichSource=Y292ZXJQYWdlOzI4ODkzMjE3MTtBUzozMTQxODA0ODQxNzM4MjRAMTQ1MTkxNzg3MjMwNg==
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Sugars present a positive correlation with ash content and a negative correlation 

with all lignin constituents. However strong positive correlations between glucose and 

TS were observed (> 0.999) and also a minor but positive correlation with xylose was 

found. This is expected once glucose and xylose are the major components of TS. 

Hayes et al., [5] observed the same significant correlation between TS and glucose. 

 

3.1. Principal component analysis 

The results from PCA applied to the raw spectra of banana, coconut and coffee, 

on the mean centered data, after performing varimax rotation, are shown in Figure 4. 

The first two PC explained 39 and 26% of the total variance, respectively. The 

remaining PC explained 35% of the cumulative variance.  

Except for PC1 (Figure 4A), the visible region of spectrum presented high 

loadings in all PC, with high weights in this region. PC1 is characterized by negative 

loadings around 1900 nm, typical of OH first stretch overtone probably due to cellulose 

[25]. This indicates that the coffee husks have lower percentages of cellulose than 

coconut and banana biomasses, which is supported by analytical data (Reference 

method) shown in Figure 3, where is possible to observe a higher average value of 

glucose (assigned to cellulose) for coconut and banana, than for coffee. On the other 

hand, PC2 was characterized by positive loadings at 540 nm, characteristic bands of 

chlorophyll [22] and, as expected, that differentiates leaf samples rich in these 

photosynthetic pigments, as well as the coffee samples with positive scores (Figure 4B). 

PC3 and PC4 have positive loadings at 470 and 677 nm, both associated to chlorophyll 

[22]. Most coffee samples and some banana samples show negative scores in PC3, 

probably assigned to C-H or CH2 stretch of lignin structures, associated with the 

negative loadings of 760 nm in PC3. 
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By the analysis of the scores plot it was not possible to distinguish between 

banana and coconut samples based on their NIR spectra. In addition, the coffee samples 

were somewhat distant from the other groups in the scores plots. But, good calibration 

models have been already reported in the literature by combining coffee with banana 

biomasses [3]. Consequently, the above discussion justifies the combination of three 

different biomasses in a single calibration model, with the advantage of covering a wide 

range of variation and being as generic as possible. 

3.2. Partial least squares regression 

All the mathematical equations and statistics used are in accordance to the 

ASTM 1655-05. The results obtained for the multi-product (banana, coffee and 

coconut) calibration models from ten constituents of interest (total lignin (TL), Klason 

lignin (KL), acid insoluble lignin (AIR), acid soluble lignin (ASL), extractives (Extrac.), 

moisture (Moisture), ash (Ash), glucose (Gluc.), xylose (Xyl.) and total sugars (TS)) are 

summarized in Tables 2 and 3. 

 In table 2 it is possible to observe that all models were built with a maximum of 

7 LV and no more than 6.2% of outliers were removed. The RE were high for 

extractives, ash and xylose (> 19.0%). Satisfactory results of RE were found for TS and 

TL (≤10), as well as good RER values, above > 10.0 indicating models acceptable for 

screening procedures. Prediction capacity of the models can be evaluated with the RPD, 

where values > 4.4 means that the models have good prediction accuracy [21]. 

According Williams [31] RPD values above 9.0 indicate excellent models, what occurs 

for TL and TS models.  

The other parameters (soluble and insoluble lignins, moisture and glucose) 

presented reasonable results, with RE lower than 14.40%, RPD above 4.4 and RER 

above 8.50. 
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Liu et al., [8] evaluated the performance of broad-based models including three 

different biomass species; corn stover, switchgrass and wheat-straw samples. For the 

same constituents modeled in this work; glucose, xylose, lignin and ash, the authors 

found very good results, with RE values less than 14% and RER values higher than 

11.23. For the constituent ―TL‖ they have obtained RER and RE values of, 11.23 and 

3.62%, respectively, what it in good agreement with the results obtained in this work for 

the same parameter (13.0 and 7.70, respectively). For the carbohydrates, glucose and 

xylose, Liu et al., [8] shows RE less than 2.37% and RER values of 12.58 and 12.87, 

respectively.  

The Ash model in this work can be considered as moderately useful for 

prediction (semi-quantitative), because shows a R
2

val < 0.80 and high error (>20%). Liu 

et al., [8] also foundd high RE values (13.85%) when modeling ash.  

The work proposed by Liu et al., [8] involved samples that presented a certain 

similarity in their chemical composition, which can facilitate the performance of the 

models. In the present study, one large variability was sampled, with quite different 

biomasses grouped in one single calibration model.   

 Hayes et al., [5] analyzed the lignocellulosic components of peat samples by 

near infrared spectroscopy and chemometric models for rapid quantitative predictions. 

All the results found were satisfactory, with R
2

val > 0.87 and RER> 8.5, except for 

extractives model, where these statistical parameters were found to be 0.769 and 7.04, 

respectively.  

Godin et al., [32] predicted chemical characteristics of fibrous plant biomasses 

from NIR spectra and found R
2

val = 0.92 for KL, which is the same value obtained in the 

present study (Figure 5). The model was considered successful for prediction, because 

presented a RPD [21] value higher than 3.0. In this work, the RPD value obtained was 
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8.30 for KL, and therefore considered also acceptable for quality control. Godin [32] 

evaluated also the properties, TS and glucose, with values of R
2

val of 0.94 and 0.00. 

Comparing with the models obtained in this work the values are better for glucose 

(0.85), but worse for TS (0.84). Glucose and TS models propose in the present work are 

successful prediction models. 

Is important to note that in this study three different biomass samples were 

included in the development of the ten calibration models, instead of one as Hayes [5] 

and Godin [32] used in their works. As a consequence, the performance of the 

calibration models can be affected. 

The regression plots (calibrations and external validation) of the reference versus 

the predicted values from the multivariate models are show in Figure 5.  

The bias is an indication of the systematic error that occurs when a plant species 

is predicted without being in the calibration set [32]. So, the t Test (95% probability) 

was used to determine if the validation estimates show a statistically significant bias. 

Except for the TS model (Table 3), all other chemical properties presented values lower 

than the tcritical value, indicating that the analyses based on multivariate models are 

expected to give essentially the same average result as the measurements conducted by 

the reference method. For TS model, there is a 95% probability that the values 

estimated by the model will not give the same average results as the reference methods, 

indicating that the validation estimates show a statistically significant bias. 

The calibration and validation error vectors (ec,v) were lower than 5.00% for all 

parameters, except for extractive and sugar models (Table 3). According to the F test 

(95%), moisture, extractives and xylose presented significant differences between SEP 

and SEC values.  
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4. Conclusion 

The multivariate models were reliable for the prediction of chemical 

composition of different biomasses species in a single multi-product model, and can be 

used for screening calibration, quality control and quantitative analyses of the main 

chemical component contents in biomasses. It was observed by the statistical 

parameters, that all the models show RER and RPD values higher than 4.0, RE less than 

20.0% and R
2 

cal, val > 0.80, except for ash and xylose models.  

The results showed the potential of a robust and reliable predictive model using 

multiple biomass species, with great variability in the chemical composition. 

Furthermore, this alternative sampling approach avoids some problems, such as 

expensive costs and time-consuming collection of diverse sample throughout years and 

different locations, favoring the fast biomass compositional analysis. In this work, three 

biomasses were investigated but this number can be even higher for a biomass 

belonging to the same applicability domain. 
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Fig. 2 
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Table 1. Linear correlation between the constituents of samples from the three 

biomasses. 

 

 

 

Table 2. Statistical results of single calibration models for the ten chemical properties 

from the three biomasses. 

 

Table 3. Statistics used in evaluating to data in calibration and validation set. 

y ec SEC ev SEP t Test F Test 

LT 5.00 1.55 3.19 1.42 1.72 1.19 

KL 3.68 1.45 3.69 1.83 0.05 1.59 

ASL 1.24 0.35 1.33 0.40 1.12 1.30 

AIR 4.62 1.77 4.27 2.12 1.24 1.43 

Moisture 2.96 1.04 4.59 1.31 1.55 1.58* 

Extrac. 8.79 2.31 8.92 3.24 0.74 1.96* 

Ash 1.66 0.58 1.74 0.62 0.70 1.14 

Xyl. 2.38 0.94 4.75 1.51 1.09 2.54* 

Gluc. 8.67 3.12 8.05 3.80 1.91 1.48 

TS 16.94 4.32 8.48 3.54 2.64* 1.06 

*: t value is greater than the tabulated t value; and F test presented significant 

differences. 

 

  

 Ash Moist Extrac. ASL KL AIR LT Glu Xyl TS 

Ash  -0,850 -0,835 0,187 -0,999 -0,997 -0,966 0,744 -0,155 0,749 

Moistu   0,422 0,356 0,837 0,815 0,956 -0,984 -0,386 -0,985 

Extract    -0,696 0,849 0,868 0,667 -0,255 0,672 -0,262 

ASL     -0,212 -0,250 0,069 -0,515 -0,999 -0,509 

KL      0,999 0,960 -0,727 0,180 -0,732 

AIR       0,948 -0,700 0,218 -0,705 

TL        -0,890 -0,102 -0,893 

Glu         0,543 0,999 

Xyl          0,537 

TS           

y Pre-treatment Matrix 

size 

LV Outliers RMSEC RMSEP RE RER RPD 

TL 2D(25) 129X2800 7 8 1.550 1.478 7.70 14.24 13.9 

KL 2D(25) 130X2800 5 7 1.444 1.803 11.80 11.55 8.30 

ASL 2D(25) 133X2800 7 4 0.352 0.410 14.00 10.40 7.36 

AIR 2D(25) 136X2800 5 1 1.766 1.899 11.35 9.44 7.63 

Moisture 2D(25) 228X2800 7 5 1.038 1.335 14.15 12.43 7.40 

Extrac. SNV+1D(3) 222X2800 7 11 2.515 3.203 19.0 12.06 4.70 

Ash 2D(25) 228x2800 6 8 0.587 0.619 21.80 9.03 4.56 

Xyl. 2D(15) 89x2800 4 5 0.939 1.520 21.70 9.16 4.91 

Gluc. 2D(15) 92x2800 7 2 3.106 4.058 14.40 19.13 7.50 

TS 2D(15) 90x2800 7 4 4.290 4.151 10.00 10.02 12.13 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Captions to figures 

 

Fig. 1. Botanical fractions sampling of (A) banana (B) coconut and (C) coffee. 

 

Fig. 2. Vis-NIR raw spectra (A) and Vis-NIR second derivative spectra. 

 

Fig. 3. Mean and standard deviation of reference analysis for all samples and each 

biomass separately. 

 

Fig. 4. (A) Loadings plot from PCA analysis. (B) Scores plot of the first two principle 

components. (C) Scores plot of the third and four principle components for the Banana, 

Coffee and Coconut biomasses. 

Fig. 5. Plot of  reference versus predicted values from  the calibration and  external 

validation models from (A)  AIR content; (B) LT content; (C) KL content; (D) ASL 

content; (E) extractives content; (F) ash content; (G) moisture content; (H) xylose 

content; (I) glucose content; (J) TS content. 
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Highlights 

 

>Potential of near-infrared spectroscopy and chemometrics for screening calibration, 

quality control and quantitative analyses of the biomass components > Principal 

component analysis (PCA) to demonstrate the possibility for combining three biomasses into 

one calibration model> robust and reliable predictive PLS models using multiple biomass 

species.  
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