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The  QSAR model  is not  dependent  of
ligand conformation.
Amphetamines  were  analyzed
by  quantum  chemical,  steric  and
hydrophobic  descriptors.
CHELPG  atomic  charges  on the  ben-
zene  ring  are  one of  the  most
important  descriptors.
The  PLS  models  built  were  exten-
sively  validated.
Manual  docking  supports  the  QSAR
results  by pi–pi  stacking  interactions.
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a  b  s  t  r  a  c  t

Chiral  molecules  need  special  attention  in drug  design.  In  this  sense,  the  R and  S configurations  of
a  series  of  thirty-four  amphetamines  were  evaluated  by  quantitative  structure–activity  relationship
(QSAR).  This  class  of  compounds  has  antidepressant,  anti-Parkinson  and  anti-Alzheimer  effects  against
the  enzyme  monoamine  oxidase  A (MAO  A). A set  of  thirty-eight  descriptors,  including  electronic,
steric  and hydrophobic  ones,  were  calculated.  Variable  selection  was  performed  through  the  correla-
tion  coefficients  followed  by  the  ordered  predictor  selection  (OPS)  algorithm.  Six descriptors  (CHELPG
atomic  charges  C3,  C4 and  C5,  electrophilicity,  molecular  surface  area  and  log  P) were  selected  for  both
configurations  and  a satisfactory  model  was obtained  by  PLS  regression  with  three  latent  variables  with
R2 = 0.73  and  Q2 =  0.60,  with  external  predictability  Q2 =  0.68, and  R2 =  0.76  and  Q2 =  0.67  with  external

2
ydrophobic and steric descriptors
 and S configurations of amphetamines

predictability  Q =  0.50,  for R and  S configurations,  respectively.  To  confirm  the  robustness  of  each  model,
leave-N-out  cross  validation  (LNO)  was carried  out and  the  y-randomization  test  was  used  to check  if these
models  present  chance  correlation.  Moreover,  both  automated  or a manual  molecular  docking  indicate
that the  reaction  of  ligands  with  the enzyme  occurs  via  pi–pi stacking  interaction  with  Tyr407,  inclined
face-to-face  interaction  with  Tyr444,  while  aromatic  hydrogen–hydrogen  interactions  with  Tyr197  are
preferable  for R instead  of  S configurations.
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. Introduction

The amphetamine family is the most common group of cen-
ral nervous system stimulant drugs. They inhibit the monoamine
xidase enzyme (MAO, EC 1.4.3.4, isoforms A and B), a flavoen-
yme that catalyzes the oxidation of biogenic amines, increasing
evels of neurotransmitters like norepinephrine, serotonin (5-HT)
nd dopamine in the brain [1,2]. The inhibition of this enzyme
as been widely studied for application as a clinical treatment of
europathological disorders such as Parkinson’s and Alzheimer’s
iseases and depression [3,4].

For many years, efforts have been directed toward understand-
ng features of the enzyme, such as its substrate binding site and
hemical mechanism of action [4].  Thus, these features may  be use-
ul for the discovery of new potent and selective MAO  inhibitors.
ifferent classes of drugs have been studied by several authors
orldwide to design new MAO  ligands, like coumarin [5],  indol

6], pyrrole [7],  and amphetamine [8,9] derivatives. Such ligands
iffer in their reversibility and selectivity with respect to the sub-
trate, and potency levels.Whereas MAO  is the target for a number
f clinically used drug inhibitors [10], both experimental and com-
utational efforts have been undertaken with the aim to identify

 new class of potent and selective compounds. Several theoret-
cal works, including quantitative structure–activity relationship
QSAR) studies of MAO  inhibitors, have been performed for dif-
erent classes of compounds [5–9]. However, there are only few
tudies relating the electronic structure of amphetamine deriva-
ives and their configuration to their antidepressant effects or for
arkinson’s or Alzheimer’s diseases.

Theoretical studies of active compounds in terms of frontier
rbital energies, the energy of the highest occupied molecular
rbital (HOMO) and the energy of the lowest unoccupied molecular
rbital (LUMO), have been employed for many years in QSAR [11].
owever, the limitations of the HOMO–LUMO approach for elec-

ron transfer was previously pointed out by Fukui [12,13]. The new
trategy of effective reactive-orbital (effective-for-reaction molec-
lar orbital, so-called, FERMO) energies developed by da Silva et al.
14] is pointing to better results than the HOMO energy approach
hen applied to biomolecules [15].

The goal of QSAR methodology is to build a regression model for
 training set using, for example, structural, steric and electronic
arameters, commonly known as descriptors. This mathemati-
al relationship, after being validated by statistical methods and
hemical intuition, is used to predict the biological activity of new
ompounds. It is useful in understanding and explaining the mech-
nism of drug action at the molecular level, providing some insights
or the design of new compounds with desirable biological proper-
ies [16].
In the present work, a QSAR study of a set of thirty-four
mphetamine derivatives (Fig. 1) is presented. The model is based
n electronic quantum chemical, hydrophobic and steric descrip-
ors. The dependence on molecular configurations in the PLS

Fig. 1. (a) Structure of the amphetamine molecule, (b) general structure of amp
mica Acta 759 (2013) 43– 52

models, i.e., the R and S amphetamine derivatives, are investigated
and discussed. The choice of these parameters as descriptors was
based on the electronic characteristics of interaction between this
class of ligand and the enzyme, as described elsewhere [9].  The
biological activity data were from the literature [8,17,18].

Protein binding sites exhibit highly selective recognition of
other molecules, such as new ligands. This has been used in the
design of new selective molecules to modify the target prop-
erty. This is possible when the X-ray crystallography receptor is
available and by applying, for example, docking techniques. Thus,
two different docking approaches were performed between the
amphetamine molecule and the MAO  A enzyme (2Z5Y PDB code)
[19]. These approaches could indicate whether the R or S config-
uration difference is relevant for its activity, according to QSAR
models.

2. Materials and methods

2.1. Chemical structure database and biological activity

The biological activities of isoform A of MAO  (MAO A) inhibitors
extracted from the literature [8,17,18], were studied using a crude
rat brain mitochondrial suspension. IC50 values were obtained from
plots of inhibition percentages using the methodology described by
Scorza et al. [8],  Hurtado-Guzman et al. [17] and Sterling et al. [18].
The reported experimental values of biological activity do not bring
any information about the stereochemistry of these compounds,
so the same value was used for both the R and S configurations, of
the compound. Although the measurements were performed using
similar techniques, some caution is appropriate to guarantee that
the data are comparable. In this sense, it is relevant that the bio-
logical activity of one compound, the selegiline molecule, has the
same reported IC50 value.

The experimental IC50 values in �M L−1 concentrations were
converted into M L−1 concentrations and later into their corre-
sponding pIC50 (−log IC50) values which are listed in Tables 1 and 2,
this unit transformation guarantees that all biological activities
have a positive value. Compounds that were described as inactive
(IC50 higher than 100 �M L−1 or with values not provided) are not
appropriate for a quantitative study and were not included in this
work. However, those molecules that have IC50 above 100 �M L−1

and had their biological activity described quantitatively, despite
being considered inactive, were included in the model. The bio-
logical activities are well distributed within the considered range
of pIC50 from 3.62 to 7.00 log units, as shown in the histogram of
Fig. 2.

Since most of the compounds have one chiral carbon atom,
both conformers, R and S, were analyzed. The S isomer is similar

to the serotonin molecule, the natural substrate of MAO  A. How-
ever, according to the results published by Vallejos et al. [9],  the
R form was also considered. For compounds that had their crys-
tallographic structure determined, such as MDMA [20], or had

hetamine derivatives. The list of substituents is shown in Tables 1 and 2.
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Table 1
Biological activities (MAO A) for compounds synthesized by Scorza [8] (Amphetamine – MDMA)  and Hurtado-Guzmán [17] (NMMTA – MTAB).

Compound R1 R2 R3 R4 R5 R6 R7 pIC50 MAO A

Amphetamine H H CH3 H H H H 4.96
PCA  H H CH3 H H Cl H 5.40
(+)MTA H H CH3 H H SCH3 H 6.96
(−)MTA  H H CH3 H H SCH3 H 5.69
ETA H  H CH3 H H SCH2CH3 H 7.00
ITA  H H CH3 H H SCH(CH3)2 H 6.40
4-EtOA H H CH3 H H OCH2CH3 H 6.70
4-MetOA H H CH3 H H OCH3 H 6.52
3,4-DMA H H CH3 H OCH3 OCH3 H 4.70
Amiflamine H H CH3 CH3 H N-(CH3)2 H 5.70
5Br-2,4-DMA H H CH3 OCH3 H OCH3 Br 4.89
2,4-DMA H H CH3 OCH3 H OCH3 H 6.22
ALEPH-2 H H CH3 OCH3 H SCH2CH3 OCH3 5.49
ALEPH-1 H H CH3 OCH3 H SCH3 OCH3 5.29
DOB  H H CH3 OCH3 H Br OCH3 4.00
DOM  H H CH3 OCH3 H CH3 OCH3 4.62
2Br-4,5-MDA H H CH3 Br H OCH2O 4.89
2Br-4,5-DMA H H CH3 Br H OCH3 OCH3 5.03
2Cl-4,5-MDA H H CH3 Cl H OCH2O 5.2
MDA H H CH3 H OCH2O H 5.03
MDMA H CH3 CH3 H OCH2O H 4.52
NMMTA H  CH3 CH3 H H SCH3 H 6.05
DMMTA CH3 CH3 CH3 H H SCH3 H 5.68
NEMTA H CH2CH3 CH3 H H SCH3 H 5.74
DEMTA CH2CH3 CH2CH3 CH3 H H SCH3 H 5.19
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ent groups following the approach of the MAO  adduct, according
to the reaction position in the FAD molecule. Thus, normally, the
molecules which have a propargyl group bonded at N9 interact with
N5 from FAD (see Figs. 1 and 3). Other substances studied in this
PMTA H CH2CH2CH3 CH3

AMTA H CH2CHCH2 CH3

TAB  H H CH2CH3

he biological activity determined for one specific configuration
(+/−)-4-Methylthioamphetamine (MTA)), the experimental con-
guration and its biological activity was used to build the PLS
odel.
The mechanism of MAO  inhibition considered in this work for

he interaction between the ligands and the enzyme active site was
rst proposed by Salach [21] and later revised by other research
roups [4,10,22,23]. The flavin adenine dinucleotide (FAD) cofactor

ould react at positions N5 or C4 (Fig. 3). This reaction position will
e defined by the ligand characteristics, as reported [10].

able 2
iological activities (MAO A) for compounds synthesized by Sterling [18].

Compound R1 R2 R3 R8 pIC50 MAO A

45a H H H CH3 4.02
45b H H H CH2CH3 3.74
45c H H H CH2CH2CH3 3.62
46a H CH3 H CH3 4.66
46b H CH3 H CH2CH3 4.70
48a CH3 CH3 H CH3 4.29
H SCH3 H 5.62
H SCH3 H 5.46
H SCH3 H 6.08

The pharmacophore mode of reaction between the FAD and
the amphetamines divides this class of molecules into two  differ-
Fig. 2. Histogram showing the distribution of the biological activity IC50 in log units
for the studied compounds.
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ig. 3. Structure of the flavin adduct formations at the MAO  enzyme proposed by
inda et al. [10].

ork interact with C4 from FAD (Fig. 3) and their chemical formulas
re presented in Tables 1 and 2.

.2. Computational methods and chemometrics

All quantum chemical calculations were carried out using
aussian 03 [24] software. The partition coefficient was calculated
y ALOGPS [25,26] and other geometric descriptors were calcu-

ated by using the Marvin program [27]. The descriptors used in
he QSAR study were analyzed by the chemometric methods of
ierarquical cluster analysis, HCA [28], principal component anal-
sis (PCA) [16,28] and partial least squares (PLS) regression [16,28]
ere implemented in Pirouette program version 3 [29].

The quantum chemical methods Austin model 1 (AM1) [30],
he Hartree–Fock (HF) [31,32], and Density-Function-Theory
DFT) [33,34] (B3LYP functional [35,36]), both with 6-31G,
-31G(d), 6-31G(d,p), 6-31+G(d,p) and 6-31++G(d,p) wavefunc-

ions, and Møller–Plesset (MP2) [37] with 6-31G basis set were
pplied to analyze which theoretical method would be more
ppropriate for the molecular geometry optimization of 3,4-
ethylenedioxymethamphetamine (MDMA, ecstasy). After the

able 3
olecular descriptors selected for R configurations.

qC3 qC4 qC5

2,4-DMA −0.43 0.46 −0.37 

2Br-4,5-DMA −0.17  0.19 0.27 

2Br-4,5-MDA −0.13 −0.08 −0.04 

3,4-DMA 0.33 0.18 −0.15 

4-EtOA −0.23 0.39 −0.26 

4-MetOA −0.24 0.42 −0.27 

5Br-2,4-DMA −0.46 0.48 −0.14 

Amiflamine −0.38 0.50 −0.42 

DOB  −0.21 −0.03 0.36 

DOM  −0.42 0.10 0.18 

MDA  0.38 0.24 −0.25 

PCA  −0.02 0.05 −0.06 

Amphetamine −0.05 −0.14 −0.09 

MDMA  −0.23 0.24 0.38 

2Cl-4,5MDA −0.24 0.26 0.33 

45a  0.43 −0.28 −0.03 

45b 0.42 −0.29 −0.01 

45c  0.46 −0.30 −0.02 

46a  0.40 −0.24 −0.08 

46b  0.42 −0.29 −0.04 

48a  0.41 −0.26 −0.06 

DEMTA −0.09  0.22 −0.13 

DMMTA  −0.10 0.22 −0.12 

MTAB  −0.09 0.22 −0.12 

NAMTA −0.10 0.24 −0.14 

NEMTA −0.10 0.22 −0.12 

NMMTA −0.12 0.23 −0.12 

NPMTA −0.09 0.22 −0.13 

(+)MTA −0.11 0.20 −0.06 

(−)MTA −0.06 0.21 −0.11 

ALEPH-1 −0.27 0.20 0.17 

ALEPH-2 −0.26  0.19 0.16 

ITA  −0.13 0.24 −0.06 

ETA −0.10  0.24 −0.14 
mica Acta 759 (2013) 43– 52

geometry optimization of MDMA  at all the mentioned theory levels,
a comparison between crystal and theoretical molecular geome-
tries was  performed. In this work, two  different approaches were
applied. In one, the root mean square (RMS) analysis was carried
out by using HyperChem software, version 7.1 [38]. In the other,
the multivariate method of PCA was applied to autoscaled bond
distances and bond and dihedral angles, which formed a X matrix
(39, 13). According to the two  analyses, the HF/6-31G(d,p) method
seems to be the most appropriate; thus it was employed for the
complete set of molecules under investigation.

It is well known that atomic charges based on electrostatic
potential are more realistic with electronegative atoms. Thus,
CHELPG [39] instead of Mulliken atomic charges, as used in Vallejos
et al. [9],  were used in the models presented here. For the charges
on carbon atoms C1–C6 (qC1–qC6) from the benzene ring, carbon
C8 (qC8) and nitrogen N9 (qN9) atoms (Fig. 1) the total energy
(εTOTAL), the HOMO, LUMO and FERMO energies (εHOMO, εFERMO
and εLUMO, respectively), and finally, the dipole moment were cal-
culated. HOMO and LUMO energies were also used to calculate the
five descriptors: absolute softness (S), absolute hardness (�), elec-
tronic chemical potential (�), absolute electronegativity (�), and
electrophilicity (ω) indexes described by Pearson [40] and Parr and
Von Szentpaly [41]. The above mentioned indexes were recalcu-
lated using the FERMO energies instead of the HOMO energies,
generating new reactivity indexes labeled as S′, �′, �′, �′, ω′.

One can select the FERMO orbitals through two consecutive
approaches: by visual examination of the molecular orbital (MO)
shapes and, further, by calculating the MO contribution on the reac-
tive ligand atom that is supposed to drive the reaction, as described

by Solomon and co-workers [42].

The steric descriptors calculated with the Marvin program were
molar refractive index and six different molecular surface areas
while molecular volume was calculated with the Gaussian program.

Eletrophilicity XlogP3 ASA P

0.013 1.75 25.66
0.019 2.46 24.97
0.024 2.18 21.34
0.013 1.2 27.15
0.016 2.14 17.06
0.016 1.77 19.75
0.016 2.58 25.34
0.010 2.16 10.94
0.019 2.58 26.03
0.012 2.24 23.35
0.014 1.64 48.12
0.021 2.43 7.88
0.016 1.76 7.91
0.013 2.15 69.14
0.018 2.12 45.95
0.017 1.01 44.99
0.017 1.37 41.05
0.017 1.9 40.33
0.017 1.52 42.87
0.016 1.88 38.92
0.017 1.98 38.81
0.020 3.9 12.89
0.021 3.16 14.78
0.022 2.79 16.34
0.022 3.34 15.19
0.021 3.06 15.82
0.021 2.58 15.28
0.021 3.59 15.18
0.022 2.31 8.93
0.022 2.31 8.93
0.018 2.17 29.84
0.017 2.54 27.71
0.021 3.11 13.61
0.022 2.68 15.53
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Table 4
Molecular descriptors selected for S configurations.

qC3 qC4 qC5 Eletrophilicity XlogP3 ASA P

2,4-DMA −0.46 0.47 −0.36 0.013 1.75 35.7
2Br-4,5-DMA −0.16  0.16 0.32 0.020 2.46 36.12
2Br-4,5-MDA −0.28  0.29 0.34 0.018 2.18 70.46
3,4-DMA 0.28 0.18 −0.10 0.012 1.2 37.66
4-EtOA −0.26 0.39 −0.23 0.016 2.14 22.98
4-MetOA −0.27 0.42 −0.24 0.016 1.77 27.15
5Br-2,4-DMA −0.49 0.46 −0.10 0.017 2.58 35.91
Amiflamine −0.40  0.50 −0.36 0.010 2.16 14.95
DOB −0.23  −0.02 0.38 0.019 2.58 36.64
DOM −0.42  0.06 0.25 0.012 2.24 32.77
MDA  0.33 0.26 −0.21 0.013 1.64 69.89
PCA  −0.06 0.06 −0.02 0.021 2.43 8.94
Amphetamine −0.09 −0.14 −0.05 0.016 1.76 8.94
MDMA −0.23  0.24 0.38 0.013 2.15 69.14
2Cl-4,5MDA −0.27 0.26 0.37 0.018 2.12 70.29
45a 0.43  −0.28 −0.03 0.017 1.01 44.99
45b  0.42 −0.29 −0.01 0.017 1.37 41.05
45c 0.46  −0.30 −0.02 0.017 1.9 40.33
46a  0.40 −0.24 −0.08 0.017 1.52 42.87
46b 0.42  −0.29 −0.04 0.016 1.88 38.92
48a  0.41 −0.26 −0.06 0.017 1.98 38.81
DEMTA −0.12 0.22 −0.10 0.020 3.9 2.78
DMMTA −0.12 0.22 −0.10 0.021 3.16 4.85
MTAB  −0.12 0.22 −0.09 0.022 2.79 6.75
NAMTA −0.123 0.22 −0.09 0.022 3.34 5.96
NEMTA −0.13 0.22 −0.10 0.021 3.06 5.95
NMMTA −0.12  0.22 −0.10 0.021 2.58 7.93
NPMTA −0.11 0.21 −0.09 0.021 3.59 5.26
(+)MTA −0.11 0.20 −0.06 0.022 2.31 8.93
(−)MTA  −0.06 0.21 −0.11 0.022 2.31 8.93
ALEPH-1 −0.30 0.21 0.201 0.018 2.17 32.44
ALEPH-2 −0.29  0.20 0.18 0.017 2.54 31.86
ITA  −0.18 0.24 −0.03 0.021 3.11 8.94
ETA −0.14  0.24 −0.10 0.022 2.68 8.93
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mong them we can cite van der Waals and solvent accessible
urface areas (hydrophobic surface area and polar surface area),
ndexed by the computer program as van der Waals, ASA, ASA+,
SA−, ASA H and ASA P. The partition coefficient log P was cal-
ulated by the ALOGPS program where seven different values
AlogPs, AClogP, AlogP, MlogP, KOWWIN, XlogP2 and XlogP3) were
btained.

To build a reliable QSAR model, a three-step procedure was
mployed for each configuration, i.e., R and S. Variable selection
as first done by excluding those descriptors which showed cor-

elation coefficients lower than 0.3 with MAO  A activity. From the
emaining descriptors, those highly correlated among themselves,
.e., with a correlation coefficient above 0.90, were also eliminated.
n addition, descriptors whose plots versus the dependent vari-
ble did not show a uniform distribution or did show pronounced
ispersion were also excluded.

Further, the ordered prediction selection method (OPS) [43] was
lso applied for variable selection. In this step, the regression vector
as used as the informative vector and the correlation coefficient

f cross-validation, Q2, was the criterion used to select the best
odels. Tables 3 and 4 contain the selected descriptors.
At the third step, the set of nine descriptors selected after vari-

ble selection was further refined using the software Pirouette
o obtain an optimized model which would fulfill the criteria for
eing statistically significant, robust and interpretatable. The Stu-
ent t test and Bonferroni test were also performed on the obtained
atrices, with 95% of confidence, to check if those matrices are
quivalent.
The PLS [16] regression method was employed to model the

elationship between the biological activity of the set of com-
ounds and the selected descriptors. In this regression method, the
X matrix of molecular descriptors is linearly related to the y vector
containing the biological activities (dependent variable). The num-
ber of latent variables in the model was  defined by leave-one-out
(LOO) cross-validation. The final model was validated by leave-
N-out (LNO) cross-validations, y-randomization [44–47] and sign
change [48]. In the LNO cross-validation procedure, N compounds
(N = 2, 3, . . .,  17) were left out from the training set. For a partic-
ular N, the data were randomized 10 times, and the average and
standard deviation values for Q2 were used. In the y-randomization
test, the dependent variable-vector was randomly shuffled 50 times
for the investigated sets and new models were built using random-
ized y and the R2 and Q2 values were compared with that of the
true model.

Exploratory analysis of the 34 amphetamines by hierarquical
cluster analysis on autoscaled data was  applied to select both the
training and test sets, by splitting the complete set of compounds
into a training set formed by 26 molecules and a test set with the 8
remaining compounds.

Due to differences in their orders of magnitude, descriptors and
biological activities (pIC50 in M L−1 of MAO  A) were autoscaled,
i.e., each of them were mean centered and then divided by the
respective standard deviation.

Molecular docking is a useful methodology to predict molec-
ular interactions between the ligand and the receptor. Programs
are commonly used to position the small molecules into the pro-
tein binding site with reliable results. Virtual docking studies were
undertaken for the most and the less potent compounds from two

different approaches, by automated docking using The AutoDockV-
ina [49] program and by manual docking, where the ligand adduct
was drawn into the binding site according to similar X-ray crystal-
lographic structure [50].
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some molecular surface areas and molar refractive indices were
eliminated for being poorly correlated to the biological activity
(correlation coefficient below 0.3). After performing variable selec-
tion by the OPS method the models for both R and S configurations
ig. 4. (a) PC1 versus PC2 versus PC3 scores plot of structural parameters from M
ethods, (b) RMS  of the MDMA  structural parameters obtained from 12 different t

. Results and discussion

.1. Chemical structure optimizations and molecular descriptors
alculations

Both analyses, PCA and RMS  (Fig. 4), comparing the experimen-
al X-ray crystallographic structure [20] reported in the literature
nd the theoretically obtained geometries of the MDMA molecule
howed similar results.

The PC1 × PC2 × PC3 scores plot (Fig. 4a) describing 72.9% of
otal variance, as well as the RMS  plot (Fig. 4b), show that the molec-
lar geometry obtained from the semiempirical method AM1  is the
ost different from the crystal geometry. One can see in the scores

lot that all geometries obtained by applying the HF method have
egative PC1 values as well as the crystal structure, however, the
FT and AM1  geometries are at positive PC1 values. Fig. 4b shows

hat the geometries obtained from HF calculations have smaller
MS  and, consequently, they are more similar to the experimen-
al crystal structure, which is in agreement with the chemometric
nalysis. In the two analyses (PCA and RMS) the selection of an
ppropriate theoretical method and the wave function used in this
ork was in agreement with results from the literature [51,52].

his step is quite important to obtain the best 3D geometry of the
ompounds and so, more reliable descriptor values. Thus, the HF/6-
1G(d,p) method was shown to be appropriate for full molecular
ptimization since its results were the most similar to experimental
ata.

Although the complete set of molecules has the same mech-
nism of reaction, the FERMO orbital is not the same for all
ompounds. The molecules without a sulfur-containing substituent
how that FERMO is HOMO-2 while molecules with such a sub-
tituent have HOMO-3 as the reactive MO.  It is remarkable in which
ay FERMO is present in the molecules, not necessarily being the

ame orbital for each molecule. Fig. 5 shows HOMO-3 to HOMO for
wo compounds: amphetamine and ETA. It is clear that HOMO-2
or amphetamine has similar electron density distributions to that

f HOMO-3 for ETA. The FERMO’s shapes are in perfect agreement
ith the shape of the reactive orbital proposed by da Silva [14].

Quantum chemical calculations resulted in the generation of
3 molecular descriptors formed by the total energy, the HOMO,
 for the crystallographic structure, calculated by 12 different quantum chemical
ical calculations relative to the experimental crystal structure.

FERMO and LUMO energies, dipole moment, CHELPG atomic
charges on the benzene ring and on the C8 and N9 atoms, the
absolute softness, absolute hardness, electronic chemical potential,
absolute electronegativity, and electrophilicity indexes calculated
from HOMO and LUMO. To complete the quantum chemical
descriptors pool, the S′, �′, �′, �′, ω′ indexes from FERMO energies
instead of those obtained from HOMO energies, were included of.
Furthermore, seven different partition coefficients, molecular vol-
umes, molecular surface areas and molar refractive indices were
also calculated to complete the set of descriptors. The QSAR stud-
ies were performed on a data matrix X (34, 38) for both R and S
ligand configurations.

Some descriptors that were initially thought to be important,
such as dipole moments and FERMO energies, molecular volume,
Fig. 5. Scheme of FERMO for two  amphetamine derivatives.
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Table 5
Statistical parameters of the PLS model for the complete data, training and test sets for R and S molecules.

R configuration S configuration

R2 Q2 SEC SEV SEP R2 Q2 SEC SEV SEP

Complete data set 0.73 0.60 0.45 0.55 0.76 0.67 0.43 0.50
Training set 0.74 0.59 0.46 0.53 0.79 0.68 0.41 0.47
Test  set 0.68 0.46 0.50 0.43
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2: correlation coefficient of multiple determination, Q2: cross-validated correlatio
ross-validation, SEP: root mean square error of prediction.

resent the same set of six descriptors, which are the CHELPG
tomic charges on the C3, C4 and C5 carbons atoms on the ben-
ene ring and the electrophilicity obtained by the HOMO energy,
he polar molecular surface area ASA P and XlogP3. Tables 3 and 4
ontain the values of the selected descriptors for all 34 compounds
or molecules in the R and S configurations, respectively.

A deeper interpretation of the selected descriptors shows clearly
hose descriptors located in the neighborhood of the molecular
eaction pocket are not significant and do not bring much infor-
ation about the ligand–enzyme interaction, and further about

he differences in biological activities in the model. The selected
escriptors in those models are located in the benzene ring, which

s not close to the reactive site or the chiral carbon, suggesting that
he biological activity of these compounds is more dependent on
he benzene ring interaction with the receptor MAO  A than the
eaction site.

. Chemometric analyses

The Student t test and Bonferroni test of the data in Tables 3 and 4
howed that they are equivalent with 95% of confidence.

Satisfactory PLS models with three latent variables were
btained for the two data matrices (34, 6). A good agreement can
e observed between experimental data and the predicted activity
ith R2 = 0.73 and Q2 = 0.60 and R2 = 0.76 and Q2 = 0.67 for R and S

onfigurations, respectively (Table 5).
The best PLS model equations for the complete data set are

hown in Eqs. (1) and (2) for R and S configurations. These mod-
ls describe 70.12% and 69.36% of original information for R and S
onfigurations, respectively.

 = −0.112qC3 + 0.573qC4 − 0.282qC5 + 0.464Eletrophilicity

− 0.136ASA P − 0.215XlogP3 (1)

 = −0.184qC3 + 0.541qC4 − 0.322qC5 + 0.478Eletrophilicity

− 0.193ASA P − 0.291XlogP3 (2)

The final PLS models were then validated by the LNO and y-
andomization [44–47] tests and were checked for sign change [48].
t is evident from all plots in Fig. 6, for the R configuration, that the

odel is robust, since it does not suffer from chance correlation
47]. It can be observed that the result obtained for LNO (Fig. 6a) is
ot greater than 0.1, as recommended [46]. The y-randomization
esults (Fig. 6b–d) indicate that this model does not suffer from
hance correlation. All obtained values for Q2 and R2 tests are below
.1 and 0.4, respectively (Fig. 6b) and the intercepts (Fig. 6c and d)
re within the acceptable values recommended in the literature, i.e.,
he intercepts are below the limits of 0.3 and 0.05, respectively [53].
he residues (Fig. 6e) are randomly distributed showing that the

odel is robust. Configuration S showed a similar graphic pattern

nd allowed the same observations (data not showed).
After validating the models for the complete data set, the

ata were split into training and test sets to verify the external
ficient, SEC: root mean square error of calibration, SEV: root mean square error of

predictability. To identify these two groups, hierarchical cluster
analysis, HCA, was  carried out on autoscaled data (dendrogram
not shown). In this analysis eight compounds were selected for
each molecular configuration to form the test set, are them 4-EtOA,
5Br-4,5-DMA, DOB, ALEPH-1, NMMTA  – MTAB, 45a and 48a.

Once the training and test sets were defined a new PLS for the
training set was  built for the six selected descriptors. As expected,
these model are similar to the model obtained for the complete data
set with 34 compounds, showing a good agreement between exper-
imental data and prediction activity with R2 = 0.74 and Q2 = 0.59 and
R2 = 0.79 and Q2 = 0.68 for R and S configurations, respectively (see
Table 5).

The PLS model was applied to the test set, and the external vali-
dation appears adequate with Q2 = 0.68 and Q2 = 0.50 for R and S
molecular configurations, respectively. All these results can be seen
in Table 5. Fig. 7a and b shows the pIC50 predicted by the model
for the training and test sets for R and S configurations, respec-
tively. These models are similar to those obtained for the complete
data set (not shown). This analysis, as well as the interpretability
of model robustness (Fig. 6) and application of the Student’s t and
Bonferroni tests (with 95% of confidence) to the obtained matrices,
indicate that both configurations are suitable to build a reliable PLS
model.

5. Molecular interpretation

In QSAR studies it is desirable to obtain a model where the
selected molecular properties can be interpreted and can be traced
parallel to the mechanism of action [46]. In the pharmacophoric
context, the binding pattern of a ligand to its binding site encodes
different interactions such as hydrogen-bonds, aromatic pi–pi
stacking interactions between the aromatic planar systems, and
hydrophobic or electrostatic interactions. In this way, a brief molec-
ular docking with AutoDockVina was  performed for amphetamine
(the simplest molecular structure) and ETA (the most potent com-
pound). Both ligand configurations were considered. In addition,
a manual docking to form the ligand adduct for the amphetamine
molecule, was  performed. To form the adduct, the ligand was drawn
into a MAO  A (2Z5Y PDB code) [19] binding site, at the same
position as the crystallographic ligand, followed by a fast optimiza-
tion with the MM+  [54] molecular force field implemented in the
molecular modeling package HyperChem. This result is shown in
Fig. 8.

To follow the above purpose, the binding modes of the lig-
ands at the substrate/ligand binding site were compared in the
crystal structure of the complex [19] (Fig. 8 left) and in the
modeled complex (Fig. 8 right). This binding site, as described
by Son et al. [19] in the crystallographic structure, consists
mainly of pi-electron systems (aromatic, delocalized and other pi-
electron-based residues), while other residues are hydrophobic.
This is obvious from the pi-stacking (face-to-face) interaction of

harmine (HRM) with Glu215, as well as from other interactions
characteristic for pi-systems such as inclined face-to-face inter-
action, perpendicular edge-to-face interactions (so called C–H· · ·pi
interactions), and edge-to-edge interactions (interactions between
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Fig. 6. (a) LNO validation plots, (b–d) y-random

romatic hydrogens). This explains the mode of binding of aro-
atic HRM and the tricyclic pi-system at the final segment of

he FAD molecule of MAO  (Fig. 8 left). The benzene ring of the

igand is well-accommodated in the pocket involved in the pi–pi
tacking interaction with Tyr407, inclined face-to-face interaction
ith Tyr444, and aromatic hydrogen–hydrogen interactions with

yr197. Interestingly, the benzene ring interacts additionally with
n plots and (e) residuals plot, R configuration.

both the residues and carbonyl oxygens of Ile180 and Asn181.
As has already been shown in this work, molecular descriptors
accounting for the aromatic character of ligands are important

for the regression models. This is consistent with the fact that
the aromatic system of the benzene ring of the ligands binds to
MAO  mainly via interactions with pi-systems of residues and car-
bonyl groups. Such interactions stabilize the complex significantly,
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a b

Fig. 7. Measured values for pIC50 for MAO  A inhibition versus estimated values for regression models for the selected variables (charges qC3, qC4, qC5, electrophilicity, XlogP3
and  ASA P) after splitting the compounds into training and test sets of (a) R and (b) S molecular configurations. The test set is shown in red and training set is in black. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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ig. 8. Comparison of interactions of MAO  amino-acids (colored in different tone
odeled structure (ligand in red) at the substrate/inhibitor binding site. (For interp

ersion of the article.)

eaning that this feature can be used to improve the ligand binding
nd specificity at the active site in drug design.

The results obtained for log P and molecular surface area showed
 good agreement with the hydrophobic binding site characteris-
ics. The polar molecular surface area (ASA P) is a solvent accessible
urface area of all polar atoms. An opposite correlation coefficient
etween the biological activity and the ASA P (negative) and XlogP3
positive) were obtained. In general, the compounds with higher

SA P values have a smaller IC50 value and XlogP3 results showed

hat hydrophobic ligands, with high log P values, are preferentially
istributed to hydrophobic compartments. Such behavior is in per-
ect agreement with ligand–enzyme interaction, which indicates
 ligands in the crystallographic structure [19] (FAD in red, HRM in green) and in
on of the references to color in this figure legend, the reader is referred to the web

that more hydrophobic a compound is, the better it binds with its
site in MAO  A.

6. Conclusion

A multivariate QSAR model for a set of thirty-four
amphetamine derivatives was  obtained for R and S configu-
rations of amphetamine derivatives. The ligands interact with

C4 of FAD (Fig. 3) and are capable of inhibiting the MAO A
enzyme.

Prior to building the QSAR model, PCA and RMS analy-
ses supported by relevant literature showed the HF/6-31G(d,p)
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uantum-chemical method as appropriate for geometry opti-
ization of these compounds and further electronic descriptor

alculations.
A X matrix was formed by 38 descriptor and thirty-four com-

ounds. The OPS algorithm, recently proposed in the literature,
as applied for variable selection, and indicated that the CHELPG

tomic charges at the benzene ring were the most important
arameters to describe the biological activity of the present group
f amphetamine derivatives. The PLS models built upon these
escriptors were extensively validated indicating that they present
atisfactory statistical quality, great prediction power and robust-
ess.

The selected descriptors could explain the interaction of ligands
ith the enzyme via a pi–pi stacking interaction and suggest com-
lex formation of the ligand by interacting with the Tyr407 amino
cid. Also, ASA P, XlogP2 and eletrophilicity obtained by the HOMO
ere selected as important descriptors of these compounds and

an be related to the hydrophobic feature of the MAO  A binding
ite.

As the PLS results for both configurations, R and S, of these
mphetamines, were similar and confirmed, and by the Student’s

 test, it could be concluded that the models were not dependent
f the ligand configuration. In this case, the similarity of both PLS
odels may  be a result of the distance (relatively large) between

he selected descriptors and the chiral atom. Therefore, no conclu-
ions could be made about which ligand configuration is the most
ctive, however, one can conclude, in the absence of stereochemical
nformation, that this characteristic is not that important to build
nto a reliable PLS model and new optimized compounds can be
uggested based on one or the other configuration.

Finally, a simple docking study and comparison of the resulting
tructure with the crystallographic structure of the complex clearly
hows the importance of ligand–receptor interactions which are
haracteristic for pi-electron systems; these are: pi–pi stack-
ng interactions with Tyr407, inclined face-to-face interactions

ith Tyr444, and aromatic hydrogen–hydrogen interactions with
yr197. This result is in agreement with the role of selected descrip-
ors that account for the aromatic character of ligands, as can be
een from the regression model.

cknowledgements

The authors acknowledge the financial support from the Brazil-
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