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In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the

chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of

acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least

squares (PLS) regression method was used to construct the models. The ordered predictor selection

(OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute

in order to take only significant chromatographic peaks into account.

The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35,

0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the

experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine

applications to predict the sensory quality of Brazilian Arabica coffee.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In Brazil, the criteria used to classify coffee beans includes
physical aspects, such as size, color, and the presence of defects in
the beans, and the sensorial characteristics of the beverage
itself [1]. The International Organization for Standardization
(ISO) presents some norms assigned to composition, defects, bean
type and format, and color, as well as characteristics after roasting
and the sensorial cup profile [2].

Despite physical aspects, the most important quality criteria
used for assessing Brazilian Arabica coffees is cup tasting or
classification by beverage type. However, such tests are often
criticized due to their subjectivity, besides the long time con-
sumed to perform the sensorial analysis and the scarcity of
experts [3,4]. In order to circumvent these limitations, specialists
and scientists are searching worldwide for alternatives using
different analytical techniques whose results could be related to
coffee cup quality [5–9].

In this regard, the identification of chemical markers asso-
ciated with sensory attributes of the coffee beverage becomes a
viable alternative in the search for an objective and less time-
consuming analytical method [8,9]. Furthermore, it is well known
ll rights reserved.
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that aroma is one of the most important attributes of the coffee
beverage. Thus, it has recently been highly valued and widely
used to discriminate high-quality coffees [6,8,10].

In this paper, several sensorial properties of Arabica coffee are
predicted by the proposed PLS models, based on analytical data,
obtained by solid phase microextraction–gas chromatographic
analysis (SPME–GC), and sensory evaluations by experts. Initial
results relating chromatographic profiles to sensorial data have
recently been published [8] and were so encouraging that the
work was extended to improve the correlation between chroma-
tographic data and sensory analysis, to introduce more attributes,
such as acidity and bitterness, and to identify the significant
volatile compounds related to each PLS model.
2. Materials and methods

2.1. Coffee samples

Fifty-three green Arabica coffee samples with different beverage
characteristics were roasted separately in a gas-fired drum roaster
(Pinhalense S/A Máquinas Agrı́colas, Brazil) to the medium roasting
point (Agtron #55—according to the SCAA roast color classifica-
tion system). The roasted coffee samples were packed in special
plastic films (polystyrene and polyethylene) and aluminum foil to
avoid loss of aroma and contamination from external substances.
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Table 1
Main compounds identified from the mass analyses by comparison of their MS spectra with those of the NIST MS database and literature.

No. R.T. Compounds Fragmentation Math Models

1 2.01 Acetaldehyde 44 (B), 43, 42 932 D

2 2.055 Methanethiol 47 (B), 45, 60 986 C, D, E

3 2.2 Acetone 43 (B), 58 870 B, C, D, F

4 2.305 Methyl acetate 43 (B), 74 944 B, C, D, E

5 2.422 2-Methylpropanal 43 (B), 39, 72 911 D

6 2.57 2,3-Butanedione 43 (B), 86 961 D

7 2.625 2-Butanone 43 (B), 73 959 C, D

8 3.065 3-Methylbutanal 41 (B), 39, 58, 71 962 A–F

9 3.158 2-Methylbutanal 41 (B), 57, 39 962 A, F

10 3.41 3-Methyl 2-butanone 43 (B), 86 893 D

11 3.477 2,3-Pentanedione 43 (B), 57 945 A, D, E, F

12 3.516 Acetic acid 45 (B), 60 952 B, D

13 3.88 2,5-Dimethylfuran 43 (B), 53, 96 922 D, F

14 4 3-Methyl pyridazine 39 (B), 65, 94 891 A, D

15 4.05 Pyrazine 80 (B), 53, 96 910 B

16 4.145 1-Methyl pyrrole 81 (B), 39, 42, 53 954 A, C, D, E, F

17 4.21 Pyridine 79 (B), 52 936 A–F

18 4.364 Pyrrole 67 (B), 39 942 A–F

19 4.865 2,3-Hexanedione 43 (B), 71, 114 911 A, F

20 5.032 2,4-Hexanedione 57 (B), 114 924 B, C, D, F

21 5.16 3,3-Dimethyl 2-butanone 57 (B), 43, 100 800 A, E

22 5.325 Dihydro-2-methyl 3(2H) furanone 43 (B), 72, 100 928 A–F

23 5.485 1-Ethyl 1H-pyrrole 80 (B), 95, 67, 53, 78 806 C

24 5.55 4-Methyl thiazole 71 (B), 99, 45 863 C

25 5.677 Methyl pyrazine 94 (B), 67, 39 965 C, E, F

26 5.794 Furfuryl methyl ether 81 (B), 53, 112 876 A, B

27 5.845 3-Methyl phenol 108 (B), 43, 65, 79 768 B, C, D, E, F

28 5.92 Furfural 39 (B), 95 953 A, C, D, E, F

29 5.99 2,n-Dimethyl 1H-pirrole 94 (B), 42 800 C

30 6.25 Trimethyl oxazole 111 (B), 42, 55, 68 882 C

31 6.66 2-Furanmethanol 98 (B), 41, 53, 81, 69 951 C, D, E, F

32 6.745 3-Methyl butanoic acid 60 (B), 45, 87, 99 822 D

33 7.675 Furfuryl formiate 81 (B), 53, 39, 126 882 B, F

34 7.74 2-Furanmethanethiol 81 (B), 53, 114 864 C, E

35 7.865 2,5-Dimethyl pyrazine 42 (B), 108, 39 902 A, E, F

36 7.953 Ethyl pyrazine 107 (B) 848 B, C, E

37 8.062 2,3-Dimethyl pyrazine 67 (B), 40, 108 886 D, F

38 8.335 Butyrolactone 42 (B), 39, 56, 86 885 D

39 8.58 Ethenyl pyrazine 106(B), 52, 79 820 A, C, D

40 8.78 N/I – – A

41 8.83 2-n-Butyl furan 81 (B), 124 755 C

42 9 3-Ethyl pyridine 92 (B), 107, 65, 39 918 A, B, C, F

43 9.19 Benzaldehyde 77 (B), 105, 51 850 F

44 9.34 5-Methyl-2-furancarboxaldehyde 53 (B), 110, 81 938 A, C, D, E, F

45 9.542 1-Acetyloxy 2-butanone 43 (B), 57, 130 902 D, F

46 9.64 N/I – – B, C

47 9.95 Phenol 94 (B), 66, 39 898 B, C, D, E, F

48 10.23 2-Furanmethanol acetate 81 (B), 43, 98, 140 949 A–F

49 10.29 2-Ethyl-6-methyl-pyrazine 121 (B), 94, 128 830 A, D

50 10.37 2-Ethyl-5-methyl-pyrazine 121 (B), 39, 58 793 A, B, C, D, F

51 10.42 Trimethyl pyrazine 42 (B), 122, 39 832 A, C

52 10.51 1-Methyl-1H-pyrrole 2-carboxaldehyde 109 (B), 53, 39, 80 B, C, D, E, F

53 10.572 2-Propionylfuran 95 (B), 39, 124 889 B, D, E, F

54 10.77 2-Etenyl 6-methyl pyrazine 52 (B), 120, 39 778 B, C, D, F

55 10.88 2-Pyrrolycarboxaldehyde 95 (B), 66, 39 886 D, E

56 10.973 N/I – – B

57 11.15 Limonene 68 (B), 93, 136 784 D, F

58 11.25 2-Acetylpyridine 79 (B), 43, 121 847 F

59 11.37 N/I – – A

60 11.444 2,20-Bifuryl 134 (B), 78, 105 805 A, E

61 11.57 Benzeneacetaldehyde 91 (B), 120, 65, 39 893 B, C, D, E

62 11.67 4-Pyridazinamide 95 (B), 43 748 B, F

63 11.76 1-(20-furyl)-2-butanone 57 (B), 81, 138 840 A, C, D

64 11.9 n-Methyl phenol 108 (B), 79, 91 800 B, C

65 11.95 N/I - – C, D, E, F

66 12.14 3-Acetoxypyridine 95 (B), 43, 137 785 F

67 12.21 2-Acetyl pyrrole 94 (B), 109, 66 800 A, F

68 12.42 N/I – – C, D, F

69 12.48 2-Acetyl N-methylpirrole 108 (B), 123 909 F

70 12.6 3-Athyl 2,5-dimethyl pyrazine 42 (B), 39, 135 905 E

71 12.91 p-Guaiacol 81 (B), 109, 53, 39 901 A, B, C, D

72 13 N/I – – A, C, D, E, F

73 13.17 N/I – – C

74 13.27 N/I – – D

75 13.37 N/I – – B, C, E
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Table 1 (continued )

No. R.T. Compounds Fragmentation Math Models

76 13.6 Maltol 43 (B), 71, 126, 55, 97 882 C, E, F

77 13.83 N/I – – C, E, F

78 14.06 5-Methyl 2-propionylfuran 109 (B), 53, 138 876 A, C, D, E, F

79 14.85 N/I – A, C, D, E, F

80 14.925 N/I – C, E

81 15.01 N/I – C, D, E

82 15.1 N/I – D, E, F

83 15.2 N/I – C, D, E, F

84 15.32 N/I – D, E, F

85 15.545 N-Furfuryl pirrole 81 (B), 53, 147 894 D, F

86 15.61 Coelution—N/I – – C, D, E, F

87 15.76 Coelution—N/I – – B, C, D, E, F

88 15.9 N/I – – E, F

89 16.01 N/I – – F

90 16.14 N/I – – A, B, D, F

91 16.245 N/I – – A, B, C, D, F

92 16.385 Furfuryl methyl disulfide 81 (B), 53, 160 891 F

93 16.49 N/I – – D, F

94 16.56 N/I – – F

95 16.63 Furfuryl pentanoate 81 (B), 98, 182 784 C, D, F

96 16.845 N/I – – A, C, D, E, F

97 17.41 N/I – – C, D, E

98 17.56 N/I – – C

99 17.72 N/I – – D, F

100 17.82 N/I – – A, C, D, F

101 17.965 N/I – – C, D

102 18.055 Furfuryl disulfide 81 (B), 53, 161 793 A–F

103 18.18 4-Ethyl guaiacol 137 (B), 152 906 B, C, E, F

104 18.315 N/I – – C

105 18.522 N/I – – C, D, F

106 18.59 N/I – – B, C, D, F

107 18.77 Difurfuryl ether 81 (B), 53, 39, 95, 69 901 F

108 18.87 N/I – – B, C, E, F

109 19.115 4-Vinylguaiacol 77 (B), 135, 150, 107, 51 907 C, E

110 19.19 N/I – – C

111 19.39 N/I – – B

112 20.57 N/I – – C

113 20.96 N/I – – A–E

114 21.22 N/I – – C

115 21.7 N/I – – A–F

A. Acidity; B. Bitterness; C. Flavor; D. Cleanliness; E. Body; F. Overall quality; N/I. Not identified.
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The samples were stored at �5 1C for a maximum of 3 h before
being ground in a mortar and analyzed.

2.2. Sensory analysis

The coffee samples for cupping were prepared using 10 g of
roasted and ground coffee in 100 mL of hot water [11]. The cup
quality was assessed according to acidity, bitterness, flavor,
cleanliness (clean cup), body (mouthfeel) and overall quality.
The quality and intensity of each attribute were evaluated
simultaneously using a scale varying from 1 to 5, as presented
in Ribeiro et al. [9].

All the samples were submitted to a sensory evaluation by five
experts. A 2-way ANOVA with all the scores of the five experts
and a paired t-test between each expert (10 tests for each
attribute) was able to verify the experts who did or did not clash
for each attribute under consideration. Experts who had high
variance in relation to others were removed and averages were
used as ‘‘main scores’’ for the six attributes that were built using
only the attributes from the experts who had similarity.

Thus, for each attribute score, 1 was conferred for a very low
quality (meaning a more intense perception in the case of an
undesirable sensation or a less intense perception if it was a
desirable sensation). When acidity is analyzed, for example,
1 may refer either to low acidity or to high and undesirable
acidity, such as that due to microbial fermentation. Thus, acidity
with score 1 is worse than acidity with score 5. On the other hand,
when bitterness was evaluated, a score of 1 referred to a bitterer
beverage than one that received a score of 5. In this case, score
5 was awarded to a beverage with normal and pleasant
bitterness [9].

The scales were arbitrarily defined, and the diversity of the
samples was considered regarding each attribute in order to
define them. Thus, according to the experts, the scores for body,
acidity, and bitterness of the samples varied between low,
normal, and high, while the diversity for overall quality, flavor,
and cleanliness was much higher. This happens because small
differences in the intensity of the latter attributes could be easily
perceived by the experts. On the other hand, acidity, bitterness,
and body possess only three distinct points (low, normal, high-
yweak, regular, strong).

2.3. SPME devices and CG-FID parameters

SPME fibers coated with 65 mm thick polydimethylsiloxane/divi-
nylbenzene (PDMS/DBV) and the manual holder were purchased
from Supelco (Bellefonte, PA). The fibers were conditioned according
to the SPME data Sheet (T7941231) from Supelco in the GC injector
port. The analyses were performed on a G-6850 GC-FID system
(Agilent, Wilmington, DE) fitted with a HP-5 capillary column
(30 m�0.25 mm�0.25 mm). Helium (1 mL min�1) was the carrier
gas. The limit of detection (LD) of the FID was 10�12 g. The oven
temperature was programmed as follows: 40 1C-5 1C/min-
150 1C-30 1C/min-260 1C. The injection port was equipped with a
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0.75 mm i.d. liner, and the injector was maintained at 220 1C in the
splitless mode. Under these conditions, no sample carryover was
observed on blank runs conducted between extractions. Identification
of the extracted analytes was performed on an HP-5890 gas chro-
matographer (Hewlett-Packard, Wilmington, DE, USA) equipped with
a HP-5973 mass-selective detector (scan mode—LD 10�12 g) fitted
with the same column and operated under the same conditions as the
GC-FID. The interface and detector (ion source) temperatures used
were 240 1C and 200 1C, respectively. GC–MS data treatment was
carried out using the Automated Mass Spectral Deconvolution and
Identification System (AMDIS) v. 2.61 software and the NIST Mass
Spectral Search Program v. 1.6d (NIST, Washington, DC, USA). Also,
comparisons were made with earlier reports on the volatile com-
pounds of roasted coffee [8,12].

2.4. General SPME procedure for sampling and injection

The conditions adopted for the SPME extractions were chosen
according to the optimization found in Ribeiro et al. [12]. Ground
coffee (250 mg) and 2 ml of saturated aqueous sodium chloride
solution were transferred to a septum-sealed glass sample vial
(5 mL). After 10 min of sample/headspace equilibration under
agitation of 900 rpm at 42.5 1C, the fibers were exposed to the
Fig. 1. Original chromatograms (A), after alignment (B) and after being fully pre-treated

after the alignment algorithm COW (B) and then smoothed and with the first derivativ
sample headspace for 22 min. After sampling, the fiber was
immediately placed in the injection port of the GC, and the
analytes were thermally desorbed at 220 1C. All analyses were
carried out in triplicate.
2.5. Chemometric data treatment

The original chromatographic profiles were organized into a
matrix format X (I� J), where each replicate represented one
sample. Data analysis was carried out using Matlab 6.5 software
(The MathWorks, Co., Natick, MA, USA) using the computational
package PLS_Toolbox (Eigenvector Research, Inc.—PLS_Toolbox
version 3.02) [13].

The data analysis was performed using the entire chromato-
gram, as with an infrared spectrum, and not using relative peak
areas. Five different pretreatments were applied to the matrix X
of chromatograms; these pretreatments are described in Ribeiro
et al. [8]. Variable selection was carried out by the ordered
predictors selection (OPS) method [14].

Partial least squares (PLS) was the regression method used for
modeling. More information on the regression method can be
found in Ferreira et al. [15] and Ribeiro et al. [8].
(C). The regions selected and expanded show the alignment of the peak before and

e function (C).



Table 2
Latent variable numbers, RMSECV and rcv, for PLS models.

Models No. LV RMSECV rcv

Acidity 5 0.2770.01 0.8370.01

Bitterness 4 0.3370.02 0.8970.02

Flavor 5 0.2670.01 0.9570.00

Cleanliness 5 0.3670.01 0.9270.01

Body 4 0.2670.01 0.8970.01

Overall quality 5 0.3870.01 0.9270.00
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3. Results and discussions

3.1. Mass detections of volatile compounds

Four different samples with distinct sensorial characteristics
were analyzed by mass spectrometry for volatile compound
identifications. In these analyses, more than 260 compounds were
detected. Table 1 presents only the 115 used in one or more PLS
regression models as important peaks for predicting the sensory
attributes. Table 1 also shows the fragmentation of the com-
pounds, the math number, and the model used.

3.2. Pre-treatment of the chromatographic data

Initially, the chromatograms of the original Arabica coffee
samples were obtained in triplicate and overlaid (Fig. 1). In
Fig. 1, and in its expanded region, it can be seen that the original
data needed pre-treatment, such as peaks alignment (B) and
baseline correction (C) before the construction of the PLS models.
Thus, subsequent calculations were performed with the pre-
treated data matrix (Xp).

3.3. Regression models

To build the regression models for the six sensory attributes
(acidity, bitterness, flavor, cleanliness, body, and overall quality),
the mean values of the notes indicated by the cuppers were used
as the dependent variables (y) and 159 chromatograms referring
to 53 Arabica coffee samples were used as independent variables
(matrix X).

The calibration sets consisted of 43 randomly selected samples
(129 chromatograms). The 10 remaining samples, corresponding
to 30 chromatograms, were used to form the external validation
set. Leave five out cross-validation was the method used to select
Fig. 2. Peaks selected by the OPS method for the regression models. Acidity (A)
the number of components in the models. In this case, three
replicates of five samples were left out at a time.

The variable selection for the construction of the models was
carried out by the OPS method in the pretreated data matrix
(159�20640) without baseline regions. In this way, from an initial
set of 20,640 variables, 1732 were selected for the construction of
the acidity model (A), 1515 for bitterness (B), 2783 for flavor (C),
1902 for cleanliness (D), 2223 for body (E), and 2179 for overall
quality (F). These variables are indicated as vertical lines in Fig. 2.

When building the PLS models, the leverage vs. Student
residuals plot was examined for outlier detection. For all the six
sensory attributes investigated, a few replicates presented high
values of leverage, while others had high values of residue.
However, since no replicates presented high values of leverage
and residue simultaneously, no sample was considered atypical.

Table 2 shows the number of latent variables selected for each
sensory attribute prediction model and the respective statistical
parameters of root mean square error of calibration, root mean
square error of cross validation (RMSECV) and correlation coeffi-
cient of cross validation (rcv).

Using the number of latent variables (Table 2) for all the
calibration models, it was possible, in general, to describe 95% and
45% of the variance used in blocks Y and X, respectively.
, bitterness (B), flavor (C), cleanliness (D), body (E), and overall quality (F).
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The models were validated by the external data set (10 samples).
Fig. 3 shows the experimental values for each sensory attribute
vs. the respective values estimated from cross validation. The
predicted values for the external validation samples were also
included in this figure to show that they are in the same range as
the other samples. The values supplied by the experts, compared
to those predicted by the PLS models for the 10 samples used in
the external validation step, are shown in Table 3. The RMSEP
(root mean square error of prediction) values were 0.27 for
acidity, 0.33 for bitterness, 0.33 for flavor, 0.41 for cleanliness,
0.34 for body and 0.35 for overall quality.

The literature describes approximately 900 volatile com-
pounds found in coffee [16]. These descriptions have been made
Fig. 3. Plots of measured versus predicted samples in calibration (J) and prediction (

quality (F).
since 1880, when Bernheimer identified the first volatile com-
pound from roasted coffee [17].

In a particular volatile chromatographic analysis from a
roasted coffee sample, the amount of compound may be smaller
or larger than in another sample. This is due to several factors,
mainly coffee species, region in which it was grown, processing
method, roasting degree, extraction time, and extraction method.

Since the SPME technique used for volatile extraction is based
on fibers with different sorbent materials (polar and nonpolar), it
is expected that the compounds extracted by a given fiber are
those that have more affinity for it.

According to the literature [18], the fiber used in this work,
PDMS/DVB, is optimal for the efficient extraction of volatile
) sets. Acidity (A), bitterness (B), flavor (C), cleanliness (D), body (E) and overall



Table 3
Measured values given by the experts and predicted values from the regression models.

Acidity Bitterness Flavor

Samples Measured Predicted Measured Predicted Measured Predicted

1 3.0070.43 2.7570.16 4.1370.63 3.3870.23 2.7570.29 2.5870.11

2 3.7070.39 3.6570.13 4.3870.75 4.2670.12 4.1970.52 4.0970.17

3 3.6970.39 3.4070.32 4.1370.63 3.9970.06 3.6370.48 3.3370.11

4 3.3870.50 3.1870.11 4.1370.63 4.3070.09 3.7570.29 3.9170.12

5 2.5670.43 2.3570.05 2.6970.63 2.9070.10 2.2570.00 2.5370.05

6 2.1970.50 2.1370.11 3.2570.50 3.5070.12 2.6370.48 2.7170.11

7 2.9170.39 2.7170.06 3.5070.50 3.5770.02 4.5070.48 3.8970.28

8 3.0070.25 2.5470.14 3.5070.63 3.6570.06 4.0070.21 4.0570.09

9 3.7070.30 3.38 70.25 4.0070.75 3.6870.13 4.5070.52 4.1170.14

10 3.0070.25 3.0070.08 4.0070.63 3.6170.12 4.5070.65 4.1270.24

Cleanliness Body Overall quality

Measured Predicted Measured Predicted Measured Predicted

1 3.8370.29 3.2470.18 3.3370.58 2.7970.08 3.3870.48 3.1270.09

2 4.3170.38 4.0370.22 3.4470.38 3.3370.08 4.3870.25 4.2670.18

3 3.6370.48 3.3670.15 3.6670.58 3.3270.16 4.1370.25 3.8170.25

4 3.8870.14 3.4570.25 2.6970.31 2.7170.03 4.0070.00 3.4970.18

5 1.5070.20 1.9970.22 1.9470.24 2.6170.05 1.5070.20 1.9170.14

6 2.3870.43 2.3770.10 2.3870.43 2.3670.05 2.1970.13 2.2270.10

7 3.7570.29 3.4070.13 3.5070.48 3.1270.12 3.5070.41 3.6870.17

8 4.0070.31 3.9970.02 3.5070.25 3.4570.23 4.0070.25 4.0370.05

9 4.5070.24 3.8870.34 4.0070.50 3.5370.03 4.5070.25 3.9270.12

10 4.5070.41 4.4470.22 4.0070.41 3.8570.09 4.5070.50 4.2570.23

Fig. 4. Distribution of volatile compounds listed in Table 1, in accordance with the PLS model(s).
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organic compounds (in the range of C2–C12) with intermediate
polarity, such as nitro/amines, and some aldehydes and ketones,
among others. Thus, hydrocarbons, carboxylic acids and alcohols
are less extracted by this coating. Based on these aspects, the
discussion of the compounds that were important for the
construction of the regression models is restricted to volatile
compounds extracted by the fiber used and detected by mass
spectrometry.

Given that the overall quality of the roasted coffee depends on
various sensory attributes (such as flavor, acidity, and body,
among others) it is expected that some compounds indicated in
Table 1 are important for most sensory attributes evaluated.
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Fig. 4 summarizes the influential volatile compounds distrib-
uted between the PLS models. Seven volatile compounds (6.1%)
are important in the construction of all models (8, 17, 18, 22, 48,
102 and 115). Another fourteen (12.2%) were used in five models
(16, 27, 28, 44, 47, 50, 52, 72, 78, 79, 87, 91, 96 and 113), and 18
more compounds (15.6%) were important for the construction of
4 regression models (3, 4, 11, 20, 31, 42, 53, 54, 61, 65, 71, 83, 86,
90, 100, 103, 106 and 108). Therefore, 34% of the peaks were
selected for at least four regression models, showing that most of
these compounds are important in providing these sensorial
features.

However, sensorial analysis, according to experts, describes a
much closer relationship between the attributes flavor, cleanli-
ness, and overall quality. Thus, it is expected that a coffee well
evaluated in terms of overall quality generally presents a high
evaluation of cleanliness and flavor. This can be seen in Fig. 2,
where 33 selected volatile compounds are part of the regression
models of the three attributes.

Most of the compounds indicated in Table 1 for overall quality,
flavor, and cleanliness in PLS models are cited in Ribeiro et al. [10]
as important markers for discriminating coffee samples by Prin-
cipal Component Analysis. Among them are pyrrole, 1-methyl
pyrrole, 2,4-hexanedione, dihydro-2-methyl-3(2H)-furanone, fur-
fural, 2-ethyl-5-methylpyrazine, 2-ethenyl N-methylpyrazine,
and 5-methyl 2-propionylfuran.

Among the compounds selected to calibrate flavor, five of them
are cited in the literature as potent odorants for roasted coffee (3-
methylbutanal, 2,3-pentanedione, 4-vinylguaiacol, methanethiol
and 1-methyl pyrrole) [19,20]. The compounds 3-methylbutanal,
2,3-pentanedione and 4-vinylguaiacol are found in high quality
roasted coffees [10], while a greater amount of methanethiol is
found in low-graded roasted coffees [10]. According to Agresti
et al.[6] and Ribeiro et al. [10] 1-methyl pyrrole was found in
coffees containing defective beans, bringing negative notes to the
flavor attribute.

The PLS model constructed for overall quality confirmed some
of the results presented in Ribeiro et al. [8]. Wherein the
compounds furfural and 5-methyl-2-furancarboxyaldehyde
appear as potential positive markers of this attribute, pyridine
and ethenyl pyrazine indicate low quality beverages.

The four PLS models constructed in Ribeiro et al. [8] were
reconstructed in this work with new samples and experts and the
similar results obtained have increased the reliability of the
correlation between coffee volatiles and quality attributes.

Comparing the PLS models based on NIR spectroscopy [9] with
those created by chromatographic data, it can be noted that the
PLS models from chromatographic data have better prediction
power (low RMSECV and RMSEP). However, it is known that NIRS
and SPME-GC are different analytical techniques that provide
complementary chemical information. The advantage of SPME-GC
is the fact that one can focus on pre-selected volatile compounds
and, by using their intensity ratios, infer about the quality of new
coffee samples.
4. Conclusions

The PLS regression models generated from the chromato-
graphic profiles of roasted Arabica coffee volatiles adequately
predicted the notes of acidity, cleanliness, overall quality, bitter-
ness, body, and flavor of the beverage. This work confirmed
previous results, showing a high linear relationship between the
marks awarded by judges for sensory attributes and volatile
compounds found in certain flavor profiles of roasted Arabica
coffees. These results, together with the previous ones, show the
reliability of using gas chromatography in the monitoring of
several important sensory attributes related to quality of coffees
from Brazil and other coffee-producing countries.

The prediction errors of these models, using 4 or 5 latent
variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34, and 0.41, for
each of the attributes and are better than those published and
compatible with the scoring errors among experts.

In the case of the PLS models for the two new attributes
studied, it should be mentioned that the compounds 2-methyl
butanal, 3-methyl pyridazine, 2,3-hexanedione, and furfuryl
methyl ether are important for coffee acidity, while compounds
such as furfuryl formiate, ethyl pyrazine, 4-pyridazinamide, and
n-methyl phenol are important in bitterness prediction.
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