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ABSTRACT: Despite highly active antiretroviral therapy
(HAART) implementation, there is a continuous need to
search for new anti-HIV agents. HIV-1 integrase (HIV-1 IN) is
a recently validated biological target for AIDS therapy. In this
work, a four-dimensional quantitative structure−activity
relationship (4D-QSAR) study using the new methodology
named LQTA-QSAR approach with a training set of 85 HIV-1
IN strand transfer inhibitors (INSTI), containing the β-diketo
acid (DKA) substructure, was carried out. The GROMACS
molecular dynamic package was used to obtain a conforma-
tional ensemble profile (CEP) and LQTA-QSAR was
employed to calculate Coulomb and Lennard−Jones potentials
and to generate the field descriptors. The partial least-squares
(PLS) regression model using 14 field descriptors and 8 latent variables (LV) yielded satisfactory statistics (R2 = 0.897, SEC =
0.270, and F = 72.827), good performance in internal (QLOO

2 = 0.842 and SEV = 0.314) and external prediction (Rpred
2 = 0.839,

SEP = 0.384, AREpred = 4.942%, k = 0.981, k′ = 1.016, and |R0
2 − R0′

2 = 0.0257). The QSAR model was shown to be robust (leave-
N-out cross validation; average QLNO

2 = 0.834) and was not built by chance (y-randomization test; R2 intercept = 0.109; Q2

intercept = −0.398). Fair chemical interpretation of the model could be traced, including descriptors related to interaction with
the metallic cofactors and the hydrophobic loop. The model obtained has a good potential for aid in the design of new INSTI,
and it is a successful example of application of LQTA-QSAR as an useful tool to be used in computer-aided drug design
(CADD).

■ INTRODUCTION
Human immunodeficiency virus (HIV), a retrovirus, is the
primary cause of acquired immunodeficiency syndrome (AIDS)
and one of the principal medical and social problems currently.
However, despite the considerable progress in antiretroviral
therapy, the eradication of HIV-1 remains unfeasible and, due to
the development of resistant strains, side effects, and the
establishment of viral reservoirs in memory T cells, there is a
continuous need for new anti-HIV agents.1−3 Data from the
UNAIDS 2010 report on the global AIDS epidemic estimated
that between 31.4 and 35.3 million people were living with HIV
at the end of 2009.4

HIV type 1 integrase (HIV-1 IN) is one of the three viral
enzymes essential for viral replication. In two reactions that HIV-
1 IN catalyzes, 3P′-processing and strand transfer, the last two
nucleotides of the viral DNA 3P′-end are cleaved and the
remaining viral fragment is inserted into the host DNA.5 HIV-1
IN strand transfer inhibitors (INSTI) are one of the most recent
breakthroughs for AIDS pharmacological treatment. The first

representative of this class of drugs is raltegravir (Figure 1), an N-
Me pyrimidone derivative of the 4,5-dihydroxypyrimidine
carboxamides, known to be well-tolerated and which has no
serious drug-related adverse events.3,6

Computational chemistry is currently an important contrib-
utor to rational drug design.7 Quantitative structure−activity
relationships (QSAR) describe how a given biological activity or
a physical−chemical property can vary as a function of molecular
structures of a set of chemical compounds. The chemical
structures are characterized by molecular descriptors, such as
those obtained by a well-specified algorithm applied to a defined
molecular representation (such as those based on graph theory
or derived from quantum chemical calculations) or from
experimental procedures (physical−chemical properties such as
1-octanol/water partition coefficient or water solubility at 25
°C).8
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In the literature, there are several QSAR studies with HIV-IN
inhibitors, as revised by Nunthaboot et al.9 Recently, Melo and
Ferreira10 published a 2D-QSAR model built with electronic
descriptors obtained through molecular modeling (EHOMO, αyy,
ET) and based on the atomic intrinsic state theory (SeaC2C2aa).
The selected descriptors were well-related to the most accepted
inhibition mechanism.11 However, although providing good
results, the model was based on a set of only 33 4,5-
dihydroxypyrimidine carboxamides,12 structurally homogeneous
and related to raltegravir.
The 4D-QSAR formalism is a grid-based technique and was

originally proposed by Hopfinger et al.13 As compared to
traditional 3D-QSAR methods,14 this approach inserts a “fourth
dimension” in the study: conformational flexibility.15 This is
obtained with a conformational ensemble profile (CEP) for each
compound generated by molecular dynamics (MD) simulation,
followed by alignments of the different conformations
obtained.14−16 In this paper, a new QSAR study is presented
for a data set built with 85 INSTI and performed by means of the
new 4D-QSAR approach named LQTA-QSAR.15 This paper
should be considered one of the first applications using this new
methodology. The findings can be helpful for designing new
active derivatives and providing a better understanding of the
inhibition of the strand transfer (ST) reaction.

■ MATERIALS AND METHODS
1. Training Set. A training set containing 85 INSTI was

selected from the literature12,17−22 and included the compounds
used previously by Melo and Ferreira.10 All compounds contain
the pharmacophore of the INSTI, the DKA substructure (Figure
2). In accordance with the information available in each paper,

the biological activity is the concentration required for 50%
inhibition of the ST reaction (IC50, in moles per liter) and was
determined by the methodology described by Hazuda et al.23

The experimental IC50 values were converted into their
corresponding pIC50 (−log IC50) values, obtaining a range
from 4.30 to 8.15 logarithmic units. The structures and pIC50 of
all compounds are available in the Supporting Information.
2. LQTA-QSAR Study.The LQTA-QSAR approach explores

both the main features of comparative molecular field analysis
(CoMFA) and of 4D-QSAR paradigms. This method is based on
the generation of a CEP for each compound, instead of only one
conformation, followed by the calculation of 3D descriptors,
using the Coulomb and Lennard-Jones potentials.24 The main
points of the whole process are summarized in Table 1 and

detailed in the subsequent sections. LQTA methodology was
totally developed as open access software and is implemented in
the JAVA environment, which allows its use on any O.S.
compatible with this computational language.

3. Molecular Modeling. The molecular set was built by
means of the HyperChem 7 software,25 based on crystallographic
structures obtained from the Cambridge Structural Database26

(see Supporting Information). Geometry optimizations were
performed in the following sequence: MM+ (using HyperChem
7) → HF/6-31G(d) (using Gaussian 03)27 → B3LYP/6-
31G(d,p) (also using Gaussian 03 program). The DFT/B3LYP
functional was chosen because comparative studies between
B3LYP, ab initio, and semiempirical theories reported that this
method leads to better QSAR models when molecular
geometries and energies are considered.28−33

The LQTA-QSAR descriptors are obtained through the CEP,
which in turn are based on MD simulations. These simulations
were performed through the GROMACS34 package, another
open access software, with explicit water molecules, so that steric
and electrostatic forces that result from the solvent on the various
conformations were taken into account. Each molecule was
simulated as its corresponding predominant microspecies at pH
7.5, according to predictions made by Marvin 4.1.8.35 Thus, 75
structures were used in the ionized form and 10 as neutral ones.
ChelpG atomic charges (charges from electrostatic potentials

using a grid based method) were calculated for each microspecies
in Gaussian 03.27 This method is based on the electrostatic
potencial (ESP) and is considered to be quite appropriate for a
4D-QSAR study, because it is able to provide a more accurate
reproduction of the molecular ESP,36 favoring the description of
Coulomb potentials between the probes and the molecules.
From the output files (*.out), the *.mol2 files were obtained

through Open Babel 2.1.1,37 which were used on the server
PRODRG 2.5 (http://davapc1.bioch.dundee.ac.uk/prodrg)38 to
build the geometry (*.gro) and topology (*.top) files used as
input data in GROMACS. Because this program uses a force field
parametrized for empirical atomic charges (ffG43a1), Gasteiger

Figure 1. Chemical structure of raltegravir (Isentress; Merck Co.).

Figure 2. β-Diketo acid (DKA) substructure.

Table 1. Operational Steps Performed in this LQTA-QSAR
Study

step description of the step

1 geometry optimization of each compound from data set using DFT
methodology, B3LYP/6-31G(d,p)*

2 calculation of ChelpG charges for predominant microspecies of biological
test

3 conversion of output files (*.out) into mol2 input files
4 generation of *.gro and *.top input files
5 calculation of Gasteiger and Marsili charges for molecular dynamics

(MD) simulations and parametrization
6 MD simulations of the molecules
7 alignment of all conformations obtained for each molecule based on the

pharmacophore INSTI inhibitors to obtain the CEP
8 use of CEP to obtain a virtual grid
9 inclusion of the input files in the LQTA-QSAR (*.gro file) with CEP and

the *. top files with CHELPG charges
10 generation of Coulomb and Lennard-Jones descriptors
11 elimination of descriptors with r < |0.2|
12 elimination of distant descriptors (cut off by variance: 0.01)
13 elimination of poorly distributed descriptors
14 variable selection with OPS method
15 building of QSAR models
16 QSAR model validation
17 mechanistic interpretation
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and Marsili atomic charges39 were derived using the software
HyperChem 7.25

The MD simulations were carried out in a virtual cubic box
with periodic properties specific to each molecule. The only
parameter in common was the minimum distance of 10 Å
between the molecule and the edge of the box. In the simulations
of ionizedmolecules, one charged atom of Na+ or Cl−was used as
counterion to meet the condition of system neutrality. Each
molecule was optimized using the steepest descent and conjugate
gradient40 algorithms with convergence in 50 N of maximum
force applied to the atoms. Then, the volume of the system was
balanced using a heating process divided into steps of 50, 100,
200, and 350 K for 20 ps in each step. The system was then
cooled to 300 K and simulated for 500 ps. A trajectory file was
saved every 1000 steps of simulation. The conformations
obtained from each derivative were organized in the same
*.gro file. For the construction of the CEP, the rotational and
translational motions of each conformation were eliminated. All
conformations obtained were aligned having the DKA
substructure (Figure 2) as a basis, without considering the
aromatic side chains (Ar).
4. LQTA-QSAR Descriptors. The Coulomb and Lennard-

Jones descriptors were generated using a virtual cubic grid of 28
× 28× 28 Å3 (center in x = 6 Å, y = 4 Å, and z = 3 Å) built by Auto
Docking.41 Next, each point of this grid was explored by probes
selected based on the mechanism of inhibition of INSTI: Ar(C−
H) and Zn2+. Thus, for the Zn2+ probe (used to represent the
metallic cofactor Mg2+), a total of 21 952 Coulomb descriptors
were obtained and the same number of Lennard-Jones
descriptors. On the other hand, only 21 952 Lennard-Jones
descriptors were generated by the Ar(C−H) probe (representing
the atoms of the aromatic side chain) totaling 65 856 descriptors.
5. Variable Reduction and Preprocessing. The number

of descriptors was reduced to 3056 (1440 obtained with the Zn2+

probe and 1616 with the Ar(C−H) probe), with the elimination
of those with absolute values of the Pearson correlation
coefficient (|r|) of the pIC50 less than 0.2. It was considered
that below this threshold no useful statistical information would
be provided to the model.8

The order of magnitude of the Lennard-Jones descriptors is
higher than that of the Coulomb descriptors. Thus, it was
necessary to choose the appropriate method of data preprocess-
ing to avoid that all descriptors within the virtual cubic box had
the same importance, because the more important ones should
be those close to the molecules. In this situation, the
interpretation of the model with regard to the mechanism of
inhibition can be compromised. Considering the type of behavior
and descriptors, the most appropriate procedure for this study is
blockscaling. In this approach, the data are preprocessed
separately (in blocks). This helps in the selection of descriptors
with maximized variance with respect to biological activity.42,43

The matrix containing the descriptors with |r| > 0.2 was split
into two: one with the Lennard-Jones descriptors and another
with the Coulomb descriptors. Then, a cutoff was applied to the
Lennard-Jones descriptor values, using the limit of 30.00
kcal·mol−1 (125.5 kJ·mol−1). This cutoff was used in order to
adjust the order of magnitude, but without affecting the relative
importance between descriptors of the same class. Then, a digital
filter44 was applied to identify and eliminate those descriptors
with abnormal dispersion in relation to biological activity. The
digital filter works by dividing the range of descriptors values into
small intervals. The lower the fmax (maximum frequency)
calculated for each interval, the more dispersed the descriptor

with regard to the range of variation of biological activity and the
better its performance. Figure 3 illustrates the procedure.

6. Variable Selection and Building of the Model.
Initially, variable selection was carried out for the two separate
matrices, one for Lennard-Jones and one for Coulomb
descriptors, using mean centered data (the mean of each column
was subtracted from all values in that column). After the selection
of relevant variables, they were merged into a single array. From
this point on, the data were autoscaled, i.e., columnwise, mean-
centered, and scaled to unity variance.
The remaining descriptors (575) were further analyzed

employing the ordered predictor selection (OPS) algorithm.
This variable selection method, developed by Teofílo et al.,45 has
presented good results for QSAR studies where ap-
plied,10,16,46−50 and is able to build models by rearranging the
columns of the matrix in such a way that the most important
descriptors, classified according to an informative vector, are
placed in the first columns. Then, successive partial least-squares
(PLS) regressions51−53 were built with increasing number of
descriptors, in order to find the best model. In this work, three
available informative vectors were used: correlation vector,
whose elements are the correlation coefficients between each
descriptor and the biological activity; the regression vector; and
an elementwise product between both vectors. The best models
were classified in descending order of statistical quality according
to their coefficient of determination of leave-one-out cross
validation (QLOO

2) or standard error of cross validation (SEV)
values.
The best reduced combination of descriptors was refined

through the software Pirouette 4,51 removing the descriptors that
were less relevant to the model and, if necessary, outliers, seeking
to obtain a statistically significant, robust, and interpretable
model. The outliers were identified by plotting the studentized
residuals (σ) versus the sample leverage generated through
Pirouette. The compounds removed were those presenting high
residuals and leverage or very high residuals (higher than 2σ).
The outliers were parsimoniously removed and only if required.

Figure 3. Schematic representation of the digital filter operation, applied
to select descriptors with linear trend and normal distribution in relation
to biological activity.
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7. Model Validation. The use of validation tools for QSAR
models is an essential process to ensure the quality of a prediction
model.10,54−60 In this study, the most useful procedures known
for quality certification of a model were used10 (see Supporting
Information for equations).
The model was internally validated in a comprehensive

manner using a set of procedures suggested in the literature: the
coefficient of multiple determination (R2), the standard error of
calibration (SEC), the F-ratio test (F), the QLOO

2, and the SEV.
The robustness of the model was examined by a leave-N-out
cross-validation61 (LNO, N = 1, ..., 17, where “N” was repeated
three times) procedure. The absence of chance correlation was
checked using y-randomization analysis.54,59 In this test, the y
vector is randomized a certain number of times (50 times in this
work), and the randomized models should not present good
explained and predicted variances.
For external validation, the data set was split into training and

test sets with the aid of hierarchical cluster analysis (HCA).62

The results of external validation were evaluated by means of
coefficient of determination of external validation (Rpred

2), the
standard error of external prediction (SEP), and the average
relative error (AREpred). However, to assess if themodel obtained
has the conditions that may be considered really predictive,
Golbraikh−Tropsha statistics was also applied10,58,63 by
calculating the slopes of the regression lines of the external
validation (k and k′), and the absolute value of the difference
between the coefficients of multiple determination (|R0

2 − R0′
2|).

Another factor that has to be evaluated is the coincidence
agreement between the signals of r for each descriptor with pIC50
and the corresponding signals of regression coefficients in the
model. The mismatch between the contributions of these two
factor signs is an indication of lack of self-consistency of the
model.65

■ RESULTS

The therapeutic activity of a drug is usually caused by interactions
with specific sites of proteic structures. These interactions may be
described by molecular properties. Although it is possible to use
structurally heterogeneous data sets, descriptors derived from
these types of sets cannot adequately explain the structure−
activity under study.65,66 One of the advantages of the nD-QSAR
(n = 3−6) approaches is the possibility of obtaining good results,
since the selected descriptors can be translated into pharmaco-
phoric models.67−72

The OPS algorithm generated a model with 34 descriptors. A
step of refinement was performed through the program Pirouette
4, and the number of descriptors was reduced to 14: 12 derived
from the Ar(C−H) probe and 2 from the Zn2+ probe. Nine
compounds (10.6% of the training set) were identified as outliers
(see Supporting Information). Thus, the final model was
obtained based on 76 compounds, 14 descriptors, and 8 latent
variables (LV). These LV accumulate 69.2% of the information
(Table 2), which is enough to explain 89.7% of the variance and
produce a model with a low standard error of calibration (SEC =
0.270). The results of the F-ratio test (n = 76; p = 8; n − p − 1 =

Table 2. Contribution of Descriptors from theModel to Each LV, its Correlation Coefficient to Biological Activity, and Autoscaled
Coefficients

descriptor LV1* LV2 LV3 LV4 LV5 LV6 LV7 LV8 r autoscaled coefficients

24.13.12 0.196 0.226 0.103 0.298 0.118 0.186 −0.727 −0.349 0.236 0.251
Ar(C−H).LJ
18.18.19 0.227 −0.126 0.394 0.182 −0.457 0.204 0.046 0.304 0.272 0.188

Ar(C−H).LJ
21.15.16 −0.357 0.028 −0.263 −0.096 −0.645 −0.024 −0.299 −0.030 −0.429 −0.324

Ar(C−H).LJ
26.18.14 0.211 0.638 0.038 −0.054 −0.071 0.082 −0.150 0.411 0.254 0.349

Ar(C−H).LJ
19.21.24 0.211 0.005 −0.264 0.296 −0.106 0.318 0.347 −0.241 0.253 0.148

Ar(C−H).LJ
20.13.16 −0.258 0.258 −0.068 0.444 0.160 0.263 0.195 0.378 −0.310 −0.081

Ar(C−H).LJ
14.23.23 −0.249 0.154 0.541 −0.034 −0.292 0.108 0.188 −0.086 −0.299 −0.077

Ar(C−H).LJ
18.24.13 0.236 0.402 0.052 −0.498 −0.114 0.211 0.232 −0.404 0.283 0.266

Ar(C−H).LJ
20.17.19 −0.208 0.286 −0.500 −0.053 −0.007 0.199 0.129 −0.007 −0.250 −0.138
Zn+2.C
22.16.9 0.243 −0.304 −0.184 −0.436 −0.056 0.303 −0.137 0.360 0.291 0.037

Ar(C−H).LJ
20.18.17 −0.210 −0.190 −0.169 0.097 −0.238 0.326 −0.179 −0.074 −0.252 −0.233

Ar(C−H).LJ
15.15.18 −0.220 −0.156 0.206 −0.232 0.372 0.625 −0.111 0.047 −0.264 −0.179

Ar(C−H).LJ
26.20.19 0.416 0.001 −0.189 −0.003 −0.045 −0.101 −0.081 0.258 0.499 0.283

Ar(C−H).LJ
14.15.21 0.376 −0.193 −0.058 0.276 −0.144 0.227 0.155 −0.205 0.451 0.235
Zn+2.LJ

cumulated information by LV 12.4% 7.6% 10.7% 7.6% 6.7% 8.0% 10.4% 5.9%
*LV = latent variable
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67; α = 0.05−95% of confidence) was much larger than its critical
value (F = 72.8 > 2.08). This amount of information was also
enough to predict 84.2% of variance, with a low standard error of
validation (SEV = 0.314). The difference between R2 and QLOO

2

is 0.055 units, indicating the absence of overfiting.55,73 The result
of predictive residual sum of squares of the cross-validation
procedure (PRESSVal = 7.487) is smaller than the sum of squares
of the experimental pIC50 (SSy = 47.47), which can be
considered a first indication that the variance predicted by the
model is real and not due to chance.56 Finally, the model also
proved to be self-consistent: the sign of the regression coefficient
for each descriptor in the model and the sign of correlation
coefficient between the respective descriptor and the biological
activity are equal.64

= + −

+ −

− −

+ −

+ −

− −

− −

+ −

− +

+ −

− −

− −

+ −

+ +

pIC 6.948 0.201[24.13.12.Ar(C H).LJ]

0.147[18.18.19.Ar(C H).LJ]

0.260[21.15.16.Ar(C H).LJ]

0.287[26.18.14.Ar(C H).LJ]

0.118[19.21.24.Ar(C H).LJ]

0.064[20.13.16.Ar(C H).LJ]

0.062[14.23.23.Ar(C H).LJ]

0.213[18.24.13.Ar(C H).LJ]

0.106[20.17.19.Zn2 .C]

0.030[22.16.9.Ar(C H).LJ]

0.211[20.18.17.Ar(C H).LJ]

0.156[15.15.18.Ar(C H).LJ]

0.268[26.20.19.Ar(C H).LJ]

0.185[14.15.21.Zn2 .LJ]

50

n = 76; R2 = 0.897; SEC = 0.270; PRESScal = 4.896; F = 72.827
(cF = 2.082); QLOO

2 = 0.842; SEV = 0.314; PRESSval = 7.484
(SSy = 47.469).

Figure 4 presents the results of the y-randomization test and of
LNO cross-validation. The result for the y-randomization shows
the absence of chance correlation: the intercept r(y,yrand)R

2 =

0.109 < 0.300 and the intercept r(y,yrand)QLOO
2 = −0.398 <

0.05.54 In LNO cross-validation, the difference between QLOO
2

and the average QLNO
2 is only 0.007 units (0.842 and 0.834,

respectively), and they may be considered virtually identical. The
greatest oscillation was observed at N = 11 (QL11O

2 = 0.834 ±
0.014). Thus, the model may be considered robust.
Using HCA, the data set was divided into training and test

sets.54 The dendrogram (Supporting Information) shows that
the test set is representative of the data set. The real model,
obtained after the selection of the test set, may be considered
virtually identical to the original model, also called auxiliary (n =
61; cumulated information: 69.8%; R2 = 0.905; SEC = 0.251;
PRESScal = 3.270; F = 62.0; QLOO

2 = 0.832; SEV = 0.308;
PRESSval = 5.79). The external validation results are presented in
Table 3. The result for Rpred

2 is higher than the minimum
threshold of 0.5, and only 0.003 units lower than QLOO

2, with a

Figure 4. Results of the y-randomization test (A and B) and LNO cross-validation (C).

Table 3. Results from External Validationa Performed with
the Real Model

compound pIC50 obs pIC50 pred residues

E7 8.000 8.373 −0.373
E8B 7.350 7.626 −0.276
G12 7.400 6.930 0.470
S9 7.300 6.835 0.465
S12 6.700 7.059 −0.359
W7 6.260 6.054 0.206
W11 6.150 6.393 −0.243
Z5 6.430 7.344 −0.914
Z7 8.000 8.005 −0.005
P10 6.000 6.272 −0.272
P16 6.210 6.421 −0.211
P19 4.770 5.169 −0.399
P32 6.890 6.650 0.240
L731927 6.300 6.388 −0.088

Rpred
2 0.839

SEP 0.384
AREpred 4.942%
k 0.981
k′ 1.016
|R0

2 − R0′
2| 0.0257

aRpred
2: coefficient of multiple determination of external prediction.

SEP: standard error of external prediction. AREpred: average relative
error of external prediction. k and k′: Golbraikh−Tropsha’s slopes.
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low associated SEP. The results indicate that the ability for
external and internal prediction are also equivalent. The result of
AREpred shows a low error potential. The results for the
Golbraikh−Tropsha’s slopes k and k′ are located within the
proposed range (0.85 at 1.15), and the parameter (|R0

2 − R0′
2|) is

below 0.3, as proposed by Tropsha, Gramatica, and Gombar.63

■ DISCUSSION

In a QSAR study, it is always desirable to obtain an interpretable
model that is able to relate the characteristics represented by the
selected molecular descriptors to the end point under study.74

One of the advantages of the 4D-QSAR model, compared to
other grid-based methods, is the number of generated
descriptors: the 3D-QSAR approach normally gives origin to
models with hundreds of descriptors. Thus, the models must
necessarily be built using the PLS regression method.24

Moreover, the 4D-QSAR approach, including LQTA-QSAR,
can generate models with much smaller amounts of descrip-
tors.13,15,75 This characteristic considerably facilitates the
interpretation of results, including the possibility of individual
interpretation for each descriptor, and also allows the
construction of models with unbiased regression methods,
such as multiple linear regression (MLR).

In the previous 2D-QSAR study,10 it was possible to obtain a
mechanistic interpretation relating the selected descriptors with a
nucleophilic attack on metallic cofactors located in the HIV-1 IN
catalytic triad (EHOMO and αyy), through interaction with the
disordered hydrophobic loop (SeaC2C2aa), and with the
importance of conformational stability for the binding of the
inhibitor in the HIV-1 IN (ET). All these interpretations could be
supported by the literature.76−83 Obviously, a 2D-QSAR study
has major differences when compared to 4D-QSAR (2D vs 4D).
In this case, a major difference is that the 2D data set (a subset of
the 4D) has a low structural variability, unlike the current one.
Another important difference to note is that the molecular
descriptors dependent on the 3D optimized structures (EHOMO,
αyy, and ET) were obtained based on a single low energy
conformation, as well as the 3D-QSAR descriptors.24 On the
other hand, in 4D-QSAR studies, the descriptors are based on the
CEP obtained by molecular dynamics and, therefore, they
represent not only the possibility of a specific conformation
interaction with a binding site, but also the possibility to estimate
how the spatial features arising from conformational flexibility
may be important for a specific biological activity.13−16 The 4D-
QSAR methods are also capable of incorporating ligand
conformational flexibility, exploring multiple alignments, evalu-
ating ligand-embedded pharmacophore groups as part of QSAR

Figure 5. Descriptor 20.17.19.Zn2+.C (represented in green) in three-dimensional space on the CEP (wire format) of L731942. Due to the large
conformational flexibility of the inhibitor, a single conformation (stick format) is shown for clarificaton.

Figure 6. Full model in three-dimensional space surrounding the CEP (wire format) and a single conformation (sticks format) of inhibitor E5b: (blue)
positive Zn2+.C descriptor; (green) negative Zn2+.C descriptor; (gray) positive descriptor Ar(C−H).LJ; (pink) negative descriptor Ar(C−H).LJ.
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model building and optimization processes and proposing an
active ligand conformation.84 Besides, since it was possible to
obtain a mechanistic interpretation in the first study,10 it is
expected that the same happens for the 4D-QSAR model.
The field descriptors are obtained by measuring the energy of

interaction between a probe and all atoms of eachmolecule of the
investigated set in each point of a three-dimensional grid that
corresponds to a rigid hypothetical receptor. Thus, it can be
related to possible drug-receptor interactions.15 In the model and
in Table 2, it is possible to see a greater number of descriptors
Ar(C−H) (12) than descriptors Zn2+ (2). In three-dimensional
space, the Zn2+ descriptors represent the metal cofactors, and
they are positioned close to each other (6.60 Å). Interestingly,
this result is equivalent to others available in the literature. An
electron spin resonance (ESR) spectroscopy study using
benzopiruvic acid in the presence of Mg2+ led to the proposal
of an intermetallic distance between 4.00 and 6.00 Å.85 In the
theoretical study of Pais et al.,86 a distance of 7.00 Å between
them was proposed.
Despite this good relationship with independent results from

other authors,85,66 it is possible that the Coulomb descriptors do
not necessarily encode information about the metal−inhibitor
interactions. The negative sign (−0.138) of the autoscaled
coefficient (last column in Table 2) for the 20.17.19.Zn2+

descriptor indicates that, despite the proximity to the keto-enol
carbonyl (1.00 Å), this descriptor is detrimental to the
interaction. The CEP for L731942 (pIC50 = 5.12) (Figure 5),
a low potency compound, shows that the side chain is quite
flexible and can occupy the point x = 20, y = 17, and z = 19 of the
grid. Thus, the information encoded by this descriptor may be an
unfavorable inhibitor−metal interaction. Since the descriptor
14.15.21.Zn+2.LJ, with positive sign (0.235), is located 3.62 Å
from the front of the E5b inhibitor (Figure 6, blue descriptor)
(pIC50 = 8.150) and 3.66 Å from the L731942 inhibitor and in
both profiles this descriptor is close to the hydrophobic groups
(tetrahydro-thiopyrane in E5b and the aromatic side chain in
L731942), it is feasible to propose that the occupation of this
coordinate is related to the increase of potency. Figure 5 and all
other figures that follows were built by using the software
Accelrys Viewer Lite 4.2.87

20.17.19.Zn2+.C and 14.15.21.Zn2+.LJ may also be related to
ligand−receptor interactions, unrelated to interactions with
cofactors or to the disorderly loop. Some studies have suggested
that other interactions can occur exactly in the “front” region of
the inhibitors. For instance, Healy et al.88 proposed for a
naphthyridine structurally similar to E5b the occurrence of van
der Waals interactions with residues His67 and Glu92. Figures 5
and 6 are also useful for comparing the degree of flexibility
between a compound with a high value of pIC50 (i.e., high
inhibitory potency) and with a low value of pIC50. Conforma-
tionally less stable compounds (such as L731942) are probably
less prone to the formation of stable interactions with the
enzyme, which would make them less powerful. In the 2D-QSAR
study, similar information was given by the descriptor ET.
Conformational flexibility may also be considered a feasible
explanation for the descriptors scattered around the inhibitors,
and not concentrated only in regions close to the aromatic side
chain and the DKA substructure.
The flexibility of the side chain is probably the reason for the

number of descriptors Ar(C−H) selected (twelve). Even in the
less flexible compounds, such asE5b, this region has considerable
conformational variation. Eight descriptors Ar(C−H) were
concentrated in this region (Figure 7). The most important

descriptor of the model, 26.18.14.Ar(C−H).LJ lies in this region,
something which may be due to the occurrence of hydrophobic
aromatic or π-stacking interactions with the disordered loop. In
the 2D-QSAR model previously published,10 the descriptor
SeaC2C2aa was related to interactions of this nature.
A more interesting interpretation may be proposed for the

descriptors Ar(C−H), specifically 21.15.16.Ar(C−H).LJ. This
descriptor is positioned very close to the keto-enol group (1.88 Å
of carbonyl and 3.61 Å of hydroxyl). Its autoscaled coefficient
(−0.324) indicates that the inhibitory potency is favored when
this coordinate is occupied. Besides its importance to the model
(it has the second highest coefficient, in absolute value) and its
proximity to the keto-enol group, this descriptor is located 6.32 Å
away from descriptor 15.15.18.Ar(C−H).LJ, near the atom X (X
= N, O) of the DKA substructure, which also has a negative
coefficient (−0.179). Such a distance is in the range proposed by
Maurin et al.85 as a possible distance between the metal cofactors
(4.00−6.00 Å). Thus, it is possible to propose that these two
descriptors are really describing the interactions of the inhibitors
with the metallic cofactors.
Although themodel is the result of a receptor independent 4D-

QSAR (RI-4D-QSAR), Martins et al.15 have shown that a simple
overlap of the selected descriptors with the binding site under
study can aid in the interpretation of results. In Figure 8, one can
observe that the descriptors override the secondary structure of
HIV-1 IN (right) and possibly with only the most important
amino acids for the inhibition (left).11,88−93 The descriptors are
mainly located close to amino acid residues responsible for
catalytic activity (Asp64, Asp116, and Glu152) and the
corresponding region in the disordered loop. This strengthens
the mechanistic interpretation proposed for the model and
shows that it is possible to generate a RI-4D-QSAR model
directly related to a mechanism of enzymatic inhibition without
the need for MD studies of the protein, which would be required
in case of a Receptor Dependent 4D-QSAR (RD-4D-QSAR)
study. Considering the computational cost and time it would take
for a large set as used in this study, this indicates that the
approach LQTA-QSAR can be of great help as a support tool in
CADD studies.

Figure 7. Descriptors 21.15.16.Ar(C−H).LJ and 15.15.18.Ar(C−H).LJ
in three-dimensional space around the inhibitor E5b, and the distance
between them. See the legend from Figure 6 for the color convention.
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Whereas the LQTA-QSAR uses the Coulomb potential and
Lenard-Jones,15 as it is done in 3D-QSAR studies (more
specifically in CoMFA),24 it is possible to compare the results to
those obtained by Raghavan et al.70 and Kuo et al.,94 who also
used INSTI to build models. In the first study, the descriptors
from the 3D model obtained for a set of flavonoids is related to
the importance of positive charge located in an area equivalent to
the DKA substructure. In the second model, developed for a set
of thiazolothiazepines, the selected electrostatic and steric fields
correspond to regions filled by the amino acids Asp64 and
Asp116 in the complex crystallographic 1QS4, to which theMg2+

ion is coordinated. The results of these two studies corroborate
the proposals made by the model in the present study. Both
described regions of high electron density, near the binding
region with the metallic cofactors that tend to favor the power of
inhibitors, may be compared to the intended meaning of the
descriptors 15.15.18.Ar(C−H).LJ, 20.17.19.Zn2+.C, and
21.15.16.Ar(C−H).LJ. The regions close to the aromatic ring
of the model from Kuo et al. 94 may be compared to the
descriptors 26.18.14.Ar(C−H).LJ, 26.20.19.Ar(C−H).LJ, and
24.13.12.Ar(C−H).LJ, since these are also positive, form a fairly
large surface (Figure 8), and are also close to the aromatic side
chain.

■ CONCLUSION

The study has built and interpreted, from the mechanistic point
of view, a 4D-QSAR model for a data set with 85 compounds
described as INSTI that have in common the DKA substructure.
For this, a newmethodology named LQTA-QSARwas used. The
study resulted in a model with good internal and external
statistical quality, including robustness and absence of chance
correlation. But the highlight is the mechanistic interpretation,
because it has shown a direct relationship to the most accepted
mechanism of action for INSTI, confirming that the descriptors
calculated based on CEP generated by MD are sensitive enough
to accumulate the information that is relevant to an action
mechanism, even without the use of a biological target. This
interpretation is corroborated by other studies, including the 2D-
QSAR study previously published by the present authors, but

mainly by the 3D-QSAR studies which also used descriptors
based on Coulomb and Lennard-Jones potentials.
The results presented here encourage the continued use of this

approach in the evaluation of other data sets, aimed at developing
new drugs and at providing a greater understanding of similar
mechanisms of action. The software LQTA-QSAR is freely
available for evaluation by the scientific community at http://
lqta.iqm.unicamp.br.
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(45) Teofílo, R. F.; Martins, J. P.; Ferreira, M. M. C. Sorting variables
by using informative vectors as a strategy for feature selection in
multivariate regression. J. Chemom. 2009, 23 (1), 32−48.
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25, 505−512.
(70) Raghavan, K.; Buolamwini, J. K.; Fesen, M. R.; Pommier, Y.;
Kohn, K. W.; Weinstein, J. N. Three-dimensional quantitative structure-
activity relationship (QSAR) of HIV integrase inhibitors: A comparative
molecular field analysis (CoMFA) study. J. Med. Chem. 1995, 38, 890−
897.
(71) Debnath, A. K. Application of 3D-QSAR techniques in anti-HIV
drug design − An overview. Curr. Pharm. Des. 2005, 11, 3091−3110.
(72) Kubinyi, H. QSAR and 3D QSAR in drug design. part 1:
Methodology. Drug Discov. Today 1997, 2, 457−467.
(73) Roy, P. P.; Leonard, J. T.; Roy, K. Exploring the impact of size of
training sets for the development of predictive QSAR models. Chemom.
Intell. Lab. Syst. 2008, 90, 31−42.
(74) OECD. Guidance Document on the Validation of (Quantitative)
Structure-Activity Relationship [(Q)SAR] Models; OECD: Paris, 2007.
(75) Ghasemi, J. B.; Safavi-Sohi, R.; Barbosa, E. G. 4D-LQTA-QSAR
and docking study on potent gram-negative specific LpxC inhibitors: a
comparison to CoMFA modeling. Mol. Divers. 2012, 16, 203−213.
(76) Votano, J. R.; Parham, M.; Hall, L. H.; Kier, L. B.; Oloff, S.;
Tropsha, A.; Xie, Q.; Tong, W. Three new consensus QSAR models for
the prediction of Ames genotoxicity. Mutagenesis 2004, 19, 365−377.
(77) Miller, K. J.; Savchik, J. A. A new empirical method to calculate
average molecular polarizabilities. J. Am. Chem. Soc. 1979, 101, 7206−
7213.
(78) Marvin User’s Guide. Calculator Plugins, Charge Plugin (2008).
http://www.chemaxon.com/marvin/help/calculations/chargegroup.
html (accessed September 2008).
(79) Morley, J. O.; Matthews, T. P. Structure-activity relationships in
nitrothiophenes. Bioorg. Med. Chem. 2006, 14, 8099−8108.
(80) Silakari, P.; Shrivastava, S. D.; Silakari, G.; Kohli, D. V.; Rambabu,
G.; Srivastava, S.; Silakari, O. QSAR Analysis of 1,3-diaryl-4,5,6,7-
tetrahydro-2H-isoindole derivatives as selective COX-2 inhibitors. Eur.
J. Med. Chem. 2008, 43, 1559−1569.
(81) Philips, O. A.; Udo, E. E.; Samuel, S. M. Synthesis and structure-
antibacterial activity of triazolyl oxazolidinones containing long chain
acyl moiety. Eur. J. Med. Chem. 2008, 43, 1095−1104.
(82) Lohray, B. B.; Gandhi, N.; Srivastava, B. K.; Lohray, V. B. 3D
QSAR studies of N-4-arylacryloylpiperazin-1-yl-phenyl-oxazolidinones:
A novel class of antibacterial agents. Bioorg. Med. Chem. Lett. 2006, 16,
3817−3823.
(83) Toit, K.; Elgorashi, E. E.; Malan, S. F.; Drewes, S. E.; Van Staden,
J.; Croueh, N. R.; Mulholland, D. A. Anti-inflammatory activity and
QSAR studies of compounds isolated from hyacinthaceae species and
tachiadenus longiflorus griseb. (Gentianaceae). Bioorg. Med. Chem.
2005, 13, 2561−2568.
(84) Pita, S. S. R.; Albuquerque, M. G.; Rodrigues, C. R.; Castro, H. C.;
Hopfinger, A. J. Receptor-dependent 4D-QSAR analysis of peptidemi-
metic inhibitors of Trypanosoma cruzi trypanothione reductase with
receptor-based alignment. Chem. Biol. Drug. Des. 2012, 79, 740−748.
(85) Maurin, C.; Bailly, F.; Buisine, E.; Vezin, H.; Mbemba, G.;
Mouscadet, J. F.; Cotelle, P. Spectroscopic studies of diketoacids-metal
interactions. A probing tool for the pharmacophoric intermetallic
distance in the HIV-1 integrase active site. J. Med. Chem. 2004, 47,
5583−5586.
(86) Pais, G. C. G.; Zhang, X.; Marchand, C.; Neamati, N.; Cowansage,
K.; Svarovskaia, E. S.; Pathak, V. K.; Tang, Y.; Nicklaus, M.; Pommier, Y.;

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci300039a | J. Chem. Inf. Model. 2012, 52, 1722−17321731

http://www.chemaxon.com/marvin/help/calculations/chargegroup.html
http://www.chemaxon.com/marvin/help/calculations/chargegroup.html


Burke, T. R., Jr Structure activity of 3-aryl-1,3-diketo-containing
compounds as HIV-1 integrase inhibitors. J. Med. Chem. 2002, 45,
3184−3194.
(87) ViewerLite, version 4.2; Accelrys Inc.: San Diego, USA.
(88) Healy, E. F.; Sanders, J.; King, P. J.; Robinson, W. E., Jr. A docking
study of L-chicoric acid with HIV-1 integrase. J. Mol. Graph. Model.
2009, 27, 584−589.
(89) Goldgur, Y.; Craigie, R.; Cohen, G. H.; Fujiwara, T.; Yoshinaga,
T.; Fujishita, T.; Sugimoto, H.; Endo, T.; Murai, H.; Davies, D. R.
Structure of the HIV-1 integrase catalytic domain complexed with an
inhibitor: A platform for antiviral drug design. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 13040−13043.
(90) Sotriffer, C. A.; Ni, H.; McCammon, J. A. HIV-1 Integrase
inhibitors interactions at the active site: Prediction of binding modes
unaffected by crystal packing. J. Am. Chem. Soc. 2000, 122, 6136−6137.
(91) Ni, H.; Sotriffer, C. A.; McCammon, J. A. Ordered water and
ligand mobility in the HIV-1 integrase-5CITEP complex: A molecular
dynamics study. J. Med. Chem. 2001, 44, 3043−3047.
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